
Donut: A Robust Distributed Hash Table based on
Chord

Amit Levy, Jeff Prouty, Rylan Hawkins
CSE 490H Scalable Systems: Design, Implementation and Use of Large Scale
Clusters
University of Washington
Seattle, WA

Donut is an implementation of an available, replicated distributed hash table built on
top of Chord. The design was built to support storage of common file sizes in a
closed cluster of systems. This paper discusses the two layers of the implementation
and a discussion of future development. First, we discuss the basics of Chord as an
overlay network and our implementation details, second, Donut as a hash table
providing availability and replication and thirdly how further development towards a
distributed file system may proceed.

Chord

Introduction

Chord is an overlay network that maps logical addresses to physical nodes in a Peer-
to-Peer system. Chord associates a ranges of keys with a particular node using a
variant of consistent hashing. While traditional consistent hashing schemes require
nodes to maintain state of the the system as a whole, Chord only requires that
nodes know of a fixed number of “finger” nodes, allowing both massive scalability
while maintaining efficient lookup time (O(log n)).

Terms

Chord

Chord works by arranging keys in a ring, such that when we reach the highest value
in the key-space, the following key is zero. Nodes take on a particular key in this
ring.

Successor

Node n is called the successor of a key k if and only if n is the closest node after or
equal to k on the ring.

Predecessor

Node n is called the predecessor of a key k if and only n is the closest node before k
in the ring.



Finger

Nodes maintain a set of other nodes, called fingers, which refer to other points on
the ring. The first finger of node n is always the successor of n.

Variables

Variable Definition
K the total number of possible keys
k a particular key in the key-space
m log(K)
N total number of nodes currently in the ring
n a particular node
r number of successors to keep in the successor list

Basic Design

A node n with key k stores a finger table containing the successors of the keys k +
20, k + 21, k + 22, ..., k + 2m. (Note: it may be the case that one node is in two
different finger entries). Given this distribution of fingers, the number of lookups of
any key’s successor, as well as the number of messages to achieve the same, is
O(log(N)).

Chord’s lookup protocol is defined by the findSuccessor procedure. If node n realizes
it is the predecessor of requested key k, n.successor is returned. Otherwise, the
node finds the closest predecessor of k by searching fingers and invoking
findSuccessor on the closest preceding node.

Donut’s findSuccessor is recursive, meaning each node in the call tree blocks until a
result is found. It is also possible to do this asynchronously, where the predeccessor
of the key returns its successor directly to the client. Donut is particularly attune to
this optimization since the clients are request servers still internal to the system.
However, network hops are not a primary performance bottleneck, so this
optimization has not been implemented.

Joins

Nodes joining a chord ring must bootstrap using an existing node in the circle. To
join existing known node n, joining node n’ invokes n.findSuccessor(n’). Once n’
finds its successor, n”, n’ notifies n” which instructs n” to set its predecessor to n’.
This is done in the stabilize routine. The join is complete once the node immediately
preceding n’ recognizes that it is the predecessor of n’.



Stabilize and Notify, Fix Fingers and Check Predecessor

With joining and leaving nodes, finger table entries, successors and predecessors
must be periodically updated for all nodes. These operations are done at scheduled
intervals spanning three procedures: fixFingers, stabilize, and checkPredecessor.

stabilize verifies a node’s immediate successor and then notifies that successor to set
its predecessor correctly. stabilize first queries its successor for its predecessor. If
the successor has a predecessor between the two nodes, the node corrects who its
successor is. This can occur when a new node joins the ring and its key lies between
the stabilizing node and it’s immediate successor.

fixFingers sequentially updates the finger table by invoking findSuccessor.
Specifically, to update the ith entry in the finger table, findSuccessor is called on the
key k + 2i, where k is the current node’s key.

checkPredecessor ensures that a node’s predecessor is alive and well. A node
periodically pings its predecessor. If the node does not respond, it is assumed dead
and the node sets itself as the predecessor, awaiting notification from its new
predecessor.

Leaves and Successor Lists

As nodes leave the ring, usually due to system crashes or network errors, the ring
stabilizes itself through fixFingers, stabilize and checkPredecessor. Between these
three functions the predecessor gets set by notify, invalidated by checkPredecessor,
fingers get updated by fixFingers, and the successor gets updated by stabilize.
However, when a node’s successor fails it must be invalidated and set to a new
successor in order for the ring to be correct. Unlike a node’s predecessor, a node will
not be notified of a new, valid successor.

For added robustness, a node keeps a list of r successors from which to remove the
failed, old successor and immediately update to the next successor. More formally, a
successor list is the set of r successors to a node. The successor list is populated by
the notify response from a node to its predecessor.
By using a successor list to handle node leaves, Donut can ensure the overlay
network is resilient up to r – 1 concurrent node failures within a defined interval.

Hash table

Interface

Donut implements two levels of hash table interfaces: one between the end-user
and the system, and another between the request servers and donut nodes. This
separates the implementation details to be abstracted from the user while
maintaining flexibility to optimize the interface for system-internal operations.



End-user interface

The external interface, exposed to the end-user is a traditional get/put/remove hash
interface. get takes a string (the key), and returns a stream of binary data (the value
for that key). put takes a string (the key) and a stream of binary data (the value to
be inserted for that key). remove takes a string (the key). The end-user is not
exposed to details such as how the key is hashed, replication, or the separation
between finding the responsible node and data transfer.

Internal interface

Request servers have a more fine grained interface with the donut nodes than with
the end-user clients.

• A call findSuccessor is exposed to the request servers.
• The key used in the get, put, and remove routines have two fields: a string

and a 64-bit id (in practice the id is encapsulated such that the key-space
could be arbitrary extended). Keeping a copy of the original key (the string)
allows the system to deal with collisions.

Internally, finding the node responsible for a key and propagating the data are
separate tasks. On receiving a request from the end user, a request server hashes
the key into a 64-bit number. It then calls findSuccessor to find the node responsible
for the key and invokes the applicable hash table procedure on that node.

Replication

Replication is done on two levels. Internally, nodes in the ring replicate data to their
successor to guarantee availability of data when nodes leave the ring. A second level
of replication is implemented by the client. On this level, data is replicated to
different keys across the ring. This level of replication can guarantee that stale reads
can be detected.

Chord level

A donut node replicates every write request (both puts and removes) to the next R
successor nodes. This guarantees that when a node leaves the ring, it’s successor –
which becomes responsible for it’s data – maintains a consistent view of that section
of the data.

Replication is implemented in a way that guarantees that all successors have the
data change before a write is considered finished. Specifically, a replicatePut or
replicateRemove is sent recursively to the R successor nodes. The actual commit
(update or removal of data) happens on the way back up the call stack. The
originating node will not receive a response unless all nodes replicated successfully.
The goal is not to guarantee that stale reads will not occur, or that the client can in
all cases ascertain whether the write was successful. Rather, the goal is to
guarantee that if a particular write was not successful the client will know. This



means there are scenarios in which all nodes replicating a key have the updated
data, but the client would be notified that the write was not successful.

Client level

There is another level of replication that is done on a higher level, by the request
servers. The method used is based on a design in Dearle, Kirby, Norcross[1]. There
is a global constant R which specifies the total number of replicas (including the
master).

For a given key k, R – 1 additional keys are computed to replicate the data on such
that k(i) = k0 + i * K / R, where i is the ith replica. Given a reasonably distributed set
of nodes, the successors for these keys will be a set of R unique nodes. If the
chosen R is such that the total number of replicas is odd, this method can be
extended to ensure that stale reads are identified.

Each write is done to all R keys. All subsequent reads of that key are also done on all
R keys. If there is a consensus (a majority of the replicas hold the same value) than
the read is correct and up to date. Otherwise the read is stale. Several scenarios can
produce the stale read state. For a discussion of some of these scenarios, as well as
some suggestions for possible ways to recover from stale reads see the Future
Directions section.

Future Directions

Handling Stale Reads

Currently, Donut can detect stale reads but has no mechanism for alleviating stale
reads. Several concurrent writes to the same key can leave that key in an
inconsistent state between replicas.

For example, suppose that R = 3 (keeping three replicas at the service level). Two
or more concurrent writes may begin, but can fail before writing to all R replicas or
the writes can interleave. Both cases potentially could leave the R replicas in three
different states, v (data before the writes), v’ (data from one writer) and v’' (data
from another writer). In this case, a consensus about the current value does not
exist, preventing Donut from providing future successful reads of the value.

One solution to interleaving writes is utilizing a deterministic ordering of writes to the
replicas. For example, write to the hashed key k, then k + i * K / R ... k + (R – 1) *
K / R, where i is the ith replica. Ordering writes allows Donut to guess at the most
recently agreed upon consensus. The middle key in the order of writes will be the
last key to have successfully written to over half of the R nodes. In a stale state
when R = 3, the first node is the most recently written, the second is the most
recently written with a consensus, and the third is the only write that completed
writing to all nodes.



Ordering client level replication requires the puts to be completed serially, effectively
tripling the time to write.

Once a stale read is detected, it can be corrected by the request handler retrying the
write request. Even with the proposed write order above, the procedure to get for a
conflicted key should return a notification identifying that corrective action must be
taken to bring the key into a stable, non-stale state.

Byzantine Fault Tolerance

In researching the direction the Donut, we began to address the problem of
byzantine fault tolerance and transient inconsistencies of finger tables (or
dynamism). Chord inherently relies on the predecessor of a key to correctly return
the final successor. In several of the papers we perused, the common fix is to
implement a routing mechanism that ensures multiple paths to reach each node.
Therefore, to implement byzantine fault tolerance Donut would most likely need to
switch its overlay network from Chord to a more robust solution such as Kademlia or
Inverse de Bruijn overlay network[8].

Conclusion

Donut is a robust distributed hash table built on top of the Chord overlay network
design. The architecture chosen was designed for a low latency concurrent system.
The request layer allows only one RPC per request between the client and the
request server over slow WAN connections, while leaving the the relatively many
RPCs per request with the nodes to be done over a fast network. Furthermore, client
level replication across the ring allows the identification of stale reads through
replica consesus. This helps handle the concurrent reads/writes that arise in
concurrent systems.

Donut is specifically designed for low latency delivery of data and concurrent reads
and writes. DHTs in general, Chord in particular, have been leveraged for file-sharing
applications. We think that Donut, on the other hand, is well suited for implementing
a multi-user file-system. The code and documentation for Donut can be found at
http://alevy.github.com/donut.

References

1. Alan Dearle, Graham NC Kirby, and Stuart J Norcross, Hosting Byzantine
Fault Tolerant Services on a Chord Ring, University of St Andrews 2007,
Abstract, PDF.

2. Amos Fiat, Jared Saia, and Maxwell Young, Making Chord Robust to
Byzantine Attacks, In European Symposium on Algorithms (ESA), 2005. PDF.

3. Antony Chazapis and Nectarios Koziris, Storing and locating mutable data in
structured peer-to-peer overlay networks, Proceedings of the Panhellenic
Conference on Informatics 2005. PDF.

http://alevy.github.com/donut
http://www.cs.st-andrews.ac.uk/?q=research/output/detail&output=DKN07.php
http://www.cs.st-andrews.ac.uk/files/publications/download/DKN07.pdf
http://www.cs.unm.edu/%7Esaia/papers/swarm.pdf
http://www.cslab.ece.ntua.gr/%7Echazapis/papers/chazapis-pci2005.pdf


4. Apu Kapadia and Nikos Triandopoulos, Halo: High-Assurance Locate for
Distributed Hash Tables, Proceedings of the 15th Annual Network &
Distributed System Security Symposium (NDSS ‘08), February 2008. PDF.

5. Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert
Morris, Ion Stoica, and Hari Balakrishnan, Building Peer-to-Peer Systems
With Chord, a Distributed Lookup Service, Proceedings of the 8th Workshop
on Hot Topics in Operating Systems (HotOS-VIII), May 2001. Abstract, PDF.

6. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications, ACM SIGCOMM 2001, San Deigo, CA, August 2001, pp.
149-160. Abstract, PDF.

7. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, Hari Balakrishnan, Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications, IEEE Transactions on Networking,
February 2003. Abstract, PDF.

8. Ying Chen and Kai Hwang, Byzantine Fault Tolerance of Inverse de Bruijn
Overlay Networks for Secure P2P Routing, Technical Report, USC Internet
and Grid Computing Lab (TR-2006-4), October, 2006. PDF.

http://www.cs.dartmouth.edu/%7Eakapadia/papers/halo_NDSS08.pdf
http://pdos.csail.mit.edu/papers/chord:hotos01/
http://pdos.csail.mit.edu/papers/chord:hotos01/hotos8.pdf
http://pdos.csail.mit.edu/papers/chord:sigcomm01/
http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://pdos.csail.mit.edu/papers/ton:chord/
http://pdos.csail.mit.edu/chord/papers/paper-ton.pdf
http://gridsec.usc.edu/files/TR/TPDS-Chen-Hwang-Oct20-2006final.pdf

	Donut: A Robust Distributed Hash Table based on Chord
	Chord
	Introduction
	Terms
	Chord
	Successor
	Predecessor
	Finger

	Variables
	Basic Design
	Joins
	Stabilize and Notify, Fix Fingers and Check Predecessor
	Leaves and Successor Lists

	Hash table
	Interface
	End-user interface
	Internal interface

	Replication
	Chord level
	Client level


	Future Directions
	Handling Stale Reads
	Byzantine Fault Tolerance

	Conclusion
	References


