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Abstract
We propose putting computation at the center of what net-
worked computers and cloud services do for their users. We
envision a shared representation of a computation: a determin-
istic procedure, run in an environment of well-specified depen-
dencies. This suggests an end-to-end argument for serverless
computing, shifting the service model from “renting CPUs by
the second” to “providing the unambiguously correct result
of a computation.” Accountability to these higher-level ab-
stractions could permit agility and innovation on other axes.


 A˝ 1, Scene 1 


CECILY: Gwendolen, I love that paper you wrote last year!
How did you make Figure 3? I’d like to reproduce it.

GWENDOLEN: Happy to help, Cecily! Reproducibility is my
jam. Just go to GitHub, clone our repo, and it’s all in there.

CECILY (to computer): git clone repo; cd repo; ls

The computer prints:
data.csv graph.svg make-graph.py
result-new.csv graph.tiff real-data.csv
graph.eps gwen-grapher.py results-dir
extract-old.sh draw-plot.py result1.txt

CECILY: Hmm, this isn’t very helpful. It might all be here
somewhere, but I don’t know what to run, which of these
files is the real data, or how anything relates to anything else.
Gwendolen, do you remember how you generated this figure?

GWENDOLEN: Huh, I forget. It’s weird how Git is so good
at recording compositional relationships—what files are in
which directory trees, what tree each commit points to—but
there’s no way to record computational relationships like “this
file is the output of this computation, given this input.” Hmm.

Scene 2

LADY BRACKNELL: Algernon, I was amazed to learn how
networked filesystems use complex algorithms to losslessly
recompress image and video files on the backing storage [3,
12]. Aren’t they worried that a bug, or pathological file, could
make them unable to recover the exact original contents?

ALGERNON: Indeed, which is why they don’t throw away
the original file until after they’ve decompressed their own
compressed output and checked that the result is identical.
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BRACKNELL: But what if the decompression program is
nondeterministic? They could get the right answer once, but
never be so lucky again. It’s hard to enforce reproducibility
on an arbitrary program without a big slowdown [19]. Hmm.

Scene 3

LANE: Oh no, we’ve been pwned! Three months ago, attack-
ers broke in and modified our code.

CHASUBLE: What are the consequences? If we had been
running the right code, how would our output have differed?

LANE: How should I know? There’s no way to tell. Hmm.

Scene 4

JEFF BEZOS: Man, AWS Lambda is bumming me out. Our
users will invoke a function with an HTTP request, and we
feed that to a Linux program they uploaded. We can get that
running within 100 ms, and burst to thousands of concurrent
executions, which is great. Except: most functions spend 90%
of their time idling the CPU, waiting on dependencies from S3
and elsewhere. We’re wasting a lot of expensive infrastructure,
which hurts us and ultimately our customers.

MERRIMAN: Why? Can’t we just overprovision by 10×?

BEZOS: Maybe, but that’s still inefficient—we’ll tie up a ton
of RAM while the functions block on I/O—and still slow.

MERRIMAN: Can we cleverly schedule functions to run on
the same nodes as their dependencies? This could be a great
place for us to innovate and outperform the other clouds.

BEZOS: Not easily, because we don’t know the dependencies;
the function fetches whatever it wants after it starts. And we
aren’t strongly incentivized to make jobs complete earlier
when users pay us for each millisecond of runtime. Hmm.

Scene 5

JACK WORTHING: Man, AWS Lambda is bumming me out.
My function spends 90% of its billed time blocked on I/O.

PRISM: What do you expect? It’s an opaque program to them;
they have no ability to make it run faster.

JACK: I just want to tell them what I’m trying to compute,
with what inputs, and let them be smart about how it’s done.
We could split any efficiency savings. All I really care about
is getting the right answer! It doesn’t even have to be AWS, as
long as somebody reputable stands behind the result. Hmm.
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2 Introduction
The stories you just read were a fib, but the issues are real.
While classical “infrastructure-as-a-service” cloud computing
involves renting a virtual server and paying by the second,
current “function-as-a-service” offerings provide almost the
same service model: renting an x86 or ARM worker and pay-
ing by the tenth of a second until a task completes. Providers
have little visibility into client dataflow, which translates into
inefficient placement and poor utilization. When most jobs
spend most of their time waiting for bytes to arrive from
across the network, even a clever provider has little ability (or
incentive) to improve the situation.

In this paper, we argue that the root issue behind each of
these vignettes is an underconstrained notion of networked
computation. We propose a research agenda centered around
what we call “computation-centric networking”1: the idea that
a networked service’s job is primarily to provide answers to
computations and would benefit from (1) fine-grained visibil-
ity into application dataflow, (2) an objective, common notion
of correctness, and (3) a separation between I/O and compute,
with delineated nondeterminism.

In our view, successfully realizing this vision would:
• let networked systems track the computational relation-

ships between artifacts, so that sharing a reproducible
pipeline is as simple as a git push / git pull / “git
reproduce” (Scene 1),

• guarantee reproducibility of server-side algorithms that
process data on a user’s behalf (Scene 2),

• allow rerunning a computational pipeline with modified
code or data, to discover the consequences of, and clean
up after, an intrusion (Scene 3), and

• benefit “serverless” providers and customers (Scenes 4
and 5). Providers would have the flexibility to schedule
and place jobs in a way that minimizes dataflow and
maximizes utilization, as long as they reach the correct
answer. If the customer chooses to double-check a re-
sult and finds the provider was mistaken, they’d be able
to collect from the provider’s insurance. That, in turn,
might free the customer to bid jobs out to competing
providers. Our theory here is akin to an end-to-end argu-
ment [21]: accountability to one high-level abstraction
(correctness) can create agility on other axes.

1We call it “computation-centric” by analogy to content- or information-
centric networking [10, 14], which argues for refactoring the network service
away from messaging and towards retrieval of identified content, however
sourced. We propose a similar refactoring, towards evaluation of named
computations however executed. (We don’t take a position on what layer of
the stack should be modified to achieve this and aren’t seeking to replace IP.)

Summary of results. We have begun to design and imple-
ment a framework for computation-centric networking, which
we call Fixpoint. We are defining a low-level, lightweight
representation for deterministic computations-on-named-data,
known as “Fix.” To represent the relationships between code
and data, Fix defines an addressing scheme that allows data to
be identified either in terms of its contents (similar to systems
like Git, BitTorrent, and IPFS) or by referring to a deter-
ministic computation that computes it. The Fixpoint system
includes a compiler that transforms Fix into raw machine
codelets, and runtime engines that evaluate such codelets on
various platforms: multicore computers, clusters, and server-
less computing platforms.

Our preliminary benchmarks have found that these abstrac-
tions are lightweight enough to let Fixpoint provide isolation
and reproducibility with overhead close to an ordinary virtual
function call. On a recent x86-64 CPU and Linux kernel, Fix-
point’s invocation overhead is about 37× faster than vforking a
process, and about 531× faster than record-replay techniques
such as rr. The raw invocation overhead is roughly 50 ns,
about 5× as slow as a virtual function call in C++.

Computation-centric networking is about constraining com-
putation and exposing its dataflow, in order to free the network
to innovate in how it produces results. We hypothesize that
it will be possible to fit most software into these strictures
without significant penalty, to create a world where most
computations are reproducible-by-default and amenable to
efficient outsourcing to oceans of cores in the cloud, supplied
by competing providers who bid for the work, innovate to find
better ways to run customer jobs, and guarantee correctness.
Whether we’re right about that remains to be seen.

3 Central hypotheses of the research
Before we dive into Fixpoint’s design, we’d like to discuss
four assumptions that will probably need to hold for the dream
of computation-centric networking to be realized.

Separating I/O and compute is widely achievable. A
key assumption is that many useful programs can be feasibly
separated into I/O and compute, so that each stage of a compu-
tation can declare its dependencies before execution, and then
execute deterministically (given those inputs) to make some
forward progress before discovering a need for additional
inputs. This model works well for many tasks (exploratory
data analysis, compilation and testing, 3D rendering, machine
learning), but is less applicable to software that involves mul-
tiple users interacting concurrently with a service with tight
synchronization (e.g., a concurrent RDBMS or lockserver).

Nondeterminism can be delineated. When we refer to
“I/O,” we expect that almost all inputs can be identified deter-
ministically, that is, pre-specified in a way that locks down
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their contents. This can occur if inputs are named by a hash
of their contents or by a deterministic way to compute them.

Of course, real-world programs sometimes desire nonde-
terministic I/O, e.g., to gather a random seed, the current
time, keyboard input, or arbitrary information from a remote
sensor or service. In Fixpoint’s world, this nondeterminism
needs to be delineated from the rest of the program, similar
to an “unsafe block” in some programming languages. The
expectation is that these occasions are infrequent, and the rest
of a program operates reproducibly given the input from a
nondeterministic procedure. (E.g. given the random seed, a
Monte Carlo simulation or encryption tool runs predictably.)

Programs won’t pay a big performance penalty. Fix has
advantages in allowing better placement decisions and fast
context switching, but also imposes slowdowns compared
with native code. We will need to gather more information
about how this nets out in real-world use.

Increased efficiency is mutually beneficial. If infrastruc-
ture providers are able to execute client jobs more efficiently
based on visibility into their dataflow, this may translate into
a mixture of greater return on investment for the provider and
more-competitive pricing for users, incentivizing deployment.

4 Fix: a language of computation on data
“It has been said that the principal function of an
operating system is to define a number of differ-
ent names for the same object, so that it can busy
itself keeping track of the relationship between all
of the different names.” —David Clark, RFC 814 [5]

Fix is a way to represent computations on data, built around
abstractions inspired by Git. The key idea is to name every
computation and piece of data in a way that fully describes
its contents, in a manner both lightweight enough to permit
tens-of-nanosecond overheads, yet general enough to support
arbitrary applications, including ones that require control of
strictness/laziness, to support functions like a short-circuiting
“and,” and higher-order functions like “curry.”

4.1 Types
Objects. Fix describes three types of object: a Blob (a

vector of bytes), a Tree (a vector of Names, each marked
strict or non-strict), or a Thunk, which refers to a computation
and stands in for the value that computation will produce. A
Thunk “refers to a computation” by giving the Name of an
ENCODE, described below. Each object is immutable and has
a canonical representation.

Names. A Name is a 256-bit value that uniquely identifies
an object. This can be a “canonical” name (the SHA-256 hash
of the object’s canonical representation), a “literal” name
(the canonical representation of the object itself), or a “local”
name (a locally generated unique ID).
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Figure 1: Representing a simple function (left) or Unix-like exe-
cution (right) in Fix’s abstractions.

Encodes. An Encode2 is a Tree in a particular format that
describes the application of a function to inputs, producing an
object as output. The entries in the Tree are (a) resource limits
that will govern the execution at runtime, (b) the procedure
itself (represented as a Blob of code, or another Encode with
captured data), and (c) any other data that should be available
to the function at runtime.

4.2 Operations
Fix’s semantics are similar to a Lisp with variable strictness
for each argument [2]. There are two fundamental operations:
evaluation of an object, and applying code to data.

Evaluation. Evaluating a Blob is the identity. Evaluating a
Tree evaluates each of its strict entries.3 Evaluating a Thunk
means running the referenced computation—applying the
Encode’s procedure to its data—and continuing recursively
until a Blob or Tree is produced.

Application of code to data. To run an Encode, the system
first evaluates the Encode Tree itself. Then, Fixpoint runs the
procedure, giving it access to the Encode’s strict entries and
the ability to create new objects. The function’s return value
is the Encode’s output.

Figure 1 shows this process for a simple “add” function (left
side) and for a more complicated execution of the CPython
interpreter on a Python script and filesystem (right side).

4.3 Representating the code
Fix ultimately represents the code as a Blob containing a
WebAssembly (Wasm) module [11]. We chose this because:

• Wasm is deterministic, with limited exceptions.
• The popular clang/LLVM compiler includes a Wasm

backend (alongside x86, ARM, etc.), so thousands of
existing programs can already be compiled into it.

• It’s possible to compile Wasm ahead-of-time into native
machine codelets that maintain Wasm’s guarantees [1],

2A recursive acronym for “Explicit Named COmputation on Data or ENCODES.”
3Each entry can be evaluated in parallel, exploiting massive parallelism [7, 8].
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with good performance: invoking a function becomes
an ordinary function call, and programs run about 88%
as fast as when source code is compiled directly [24].

We emphasize that the choice of Wasm isn’t intrinsic to
Fix: any language capable of guaranteeing deterministic safe
execution could be used. Before runtime, the Wasm proce-
dures will be compiled to native machine code, and at runtime,
Fixpoint will jump to these codelets, oblivious to the language
they came from.

5 Prototype implementation of Fixpoint
To test our design, we have implemented a “trusted toolchain”
that compiles Fix programs into x86-64 machine codelets,
and a prototype runtime engine that executes computations
locally on a single core. These tools will be available as free
(open source) software.

Given a Wasm module, Fixpoint compiles it by using (1)
the WebAssembly Binary Toolkit’s wasm2c tool [1] to con-
vert it to C source code, (2) libclang to compile that to
optimized x86-64 machine code, and then (3) an in-memory
ELF linker that we developed to link the codelet with the Fix-
point API. (We contributed several changes back to wasm2c
to support this approach. Using this pipeline is easier and sim-
pler than writing and maintaining our own Wasm-to-x86 com-
piler.) These steps can be performed upfront before runtime.
We intend for the toolchain to be an ordinary Fix program,
run inside Fixpoint like any other program.

From the perspective of the original Wasm code, Fixpoint’s
API allows it to “map” Blobs and Trees into native Wasm data
types (for Blobs, a read-only linear memory, and for Trees,
an externref-typed table). This allows the procedure to have
zero-copy access to the Encode and its strict entries. Names
are represented as 256-bit vector types, which can be passed
by value through AVX2 (YMM) registers.

We have also begun implementing a library to let existing
Unix-style programs run on Fixpoint. The Wasm commu-
nity has created a standard C library (wasi-libc) that imple-
ments the C/POSIX interface in terms of underlying system
calls known as the WebAssembly System Interface (WASI).
This allows many existing programs to be compiled to Wasm
(e.g. the CPython interpreter, clang, ffmpeg, etc.). In turn,
we implemented a library called Flatware (Figure 2) that
implements the WASI interface in terms of the Fixpoint
API—treating the Encode as containing a Unix-like filesys-
tem. From Fixpoint’s perspective, this translation layer is an
ordinary unprivileged part of the procedure.

6 Evaluation
In this section, we measure Fixpoint’s overhead by compar-
ing the performance of various 8-bit add programs. We’d
like to provide preliminary evidence that the principles of

Fixpoint

API: 

API: POSIX/C 

API: WASI 

attach_blob
attach_tree
create_blob
create_tree
create_thunk
value_type

add fib Flatware

wasi-libc

CPython add_posixclanghello.c

Figure 2: Fix can express “native” functions as well as Unix-style
programs that manipulate a filesystem.

computation-centric networking (fine-grained visibility into
application dataflow, accountability to a shared notion of cor-
rectness, and I/O-compute separation) can be realized with
acceptable overhead.

6.1 Setup
Implementations: We compare the performance of six 8-
bit add functions: three simple functions, and three POSIX
programs with full libc initialization.

(1) static: Calling a statically linked function in C that
adds two 8-bit integers. This provides no isolation, re-
producibility, or declared dataflow.

(2) virtual: The same, called as a virtual function in C++.
(3) Fixpoint: The same, implemented in WebAssembly

against the Fixpoint API. This provides isolation, repro-
ducibility, and declared dataflow.

(4) Flatware: A full C/POSIX program with a main func-
tion, linked against the WASI libc and our Flatware
library, then run in Fixpoint. This also provides isola-
tion, reproducibility, and declared dataflow.

(5) Process: The same, linked against the system libc and
run as a Linux process. This provides isolation.

(6) Process in rr: The same, inside a long-running invoca-
tion of the rr record-replay tool [19], which provides
isolation and “replayability” (the same output can be
achieved by replaying the trace recorded when rr was
first run).

Benchmark: For the first four, we evaluate the add function
4,096 times, and report the average time per function call. For
the last two, we vfork the add program and wait for its
completion 4,096 times, and average the time per execution.
We report the average of five benchmark runs.

Hardware: Our experiments were executed on a machine
with two 64-core 2 GHz CPUs (AMD EPYC 7702).
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Figure 3: Benchmark Result

6.2 Analysis
As Figure 3 shows, implementing add as static or virtual
function calls are the fastest implementations, taking 1.5 and
11.0 nanoseconds for execution, but do not provide isolation,
reproducibility, etc. Executing add as a Linux process pro-
vides isolation, at the cost of a > 300 𝜇s context-switching
penalty. Running a process inside a long-running rr invoca-
tion (for replayability) incurrs a > 4-millisecond penalty.

By contrast, the two Fixpoint versions seem to compare
promisingly with their conventional counterparts. The “sim-
ple” Fixpoint program is 5× slower than a virtual function
call—an overhead of about 40 nanoseconds. We think this
is a fair trade for enabling computation-centric networking,
by enforcing that the program only accesses dependencies
that have been declared to the underlying infrastructure and
runs reproducibly. Realistically, it suggests that a practical
Fixpoint function granularity will be one that takes at least
5× this duration (roughly 200 ns) to execute.

Fixpoint’s execution of a “full” POSIX program (including
libc setup, the start and main functions, etc.) compares
well with conventional methods—it is 37× faster than a Linux
vfork, and about 531× faster when that vfork happens in-
side rr. This mostly speaks to the advantages of WebAssem-
bly’s enforced isolation by use of a secure language, rather
than relying on context switching, the MMU, and tracing
sources of nondeterminism.

Of course we are measuring a microbenchmark of our
choosing against the sophisticated and rich behavior of the
Linux kernel; it’s not clear these advantages will be main-
tained as Fixpoint and the Flatware layer grow inevitably
more complicated. Still, these preliminary benchmarks give
some hope that the architecture we have sketched is light-
weight enough to provide a reasonable substrate for many
real-world applications.

7 Towards computation-centric networking
Our hypothesis has been that by changing the model of net-
worked computation and cloud computing away from “billing
for effort” (renting CPUs) and towards “paying for results”
(i.e., objectively correct answers), substantial benefits can
be unlocked. We expect networked applications to change
dramatically in ways that can’t be feasibly realized when
software is represented as it is today:

• Massive burst parallelism. Applications will burst to
massive parallelism on a transient basis—e.g., spin-
ning up 100,000 parallel computations for one sec-
ond, with heterogenous dataflow between computations.
This could transform many types of batch operations
into interactive ones.

• Reproducibility and determinism by default. As soft-
ware increases in complexity, users will want the ability
to take any computed output and share the process
needed to reproduce it, as easily as they can trace and
share the history of source code in a version-control
system (such as Git) today.

• Security and information flow control. Users who
compute with both shared and private data will want to
track the provenance of computed outputs and enforce
policies about who can see, or use, the results.

• Software will be natively distributed and accom-
modate heterogenous infrastructure. As more soft-
ware becomes distributed, applications will make their
dataflow manifest to the operating system to let the in-
frastructure make good placement decisions to increase
locality. The provider will benefit from the freedom to
choose among “moving code to data,” “moving data to
code” or even “recompute data instead of moving it.”
Datacenters will include a diversity of machine types,
accelerators, and power efficiency strategies.

• Ultra-high-density multitenancy. Compute infrastruc-
ture will need to pack as many applications as possible
into limited memory and CPU resources. This will re-
quire fine-grained understanding of each application’s
current working set and the ability to swap out state
that isn’t currently used—or to discard state completely,
and if needed later, recalculate it from a checkpoint.

• Arm’s length verifiable computation. Computation
will become a commodity, with software automatically
bidding out its compute needs to competing infrastruc-
ture providers. To allow users to trust the results, the
infrastructure will supply a verifiable certificate of cor-
rectness and an insurance policy that pays if the user
chooses to verify and an error can be demonstrated.

• Regulation. Are there industries in which regulators
might require that companies commit to the chain of
reasoning behind their computational results, even if the
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algorithm remains confidential for the foreseeable fu-
ture? E.g. should each credit denial, or stock-exchange
trade, or search results page, be accompanied by the
hash of a Thunk that computed it?

We expect many open questions will need to be solved
before these dreams might be realized, e.g.:

- How should nondeterministic I/O be handled?
- How and when should garbage collection occur?
- Should there be a second language of “execution strat-

egy” hints to guide the network’s placement and sched-
uling of evaluations, in order to maximize locality?

- How should users share reproducible computations
with one another—through a Git-like repository?

- What’s the right API for higher-level languages to ex-
pose constructs like “a parallel map that compiles into
a Fix program that can run in parallel on 10,000 cores”?

- What should a “visual debugger” look like to aid incre-
mental development and inspect the computation flow
and provenance of computed outputs?

- How should this type of “serverless computation” be
billed—perhaps based on CPU runtime (with no block-
ing for I/O, since it’s the provider’s job to position
dependencies in place before execution begins) with
discounts for collocation and other efficiencies?

8 Related work
This paper’s vision of computation-centric networking has
many antecedents: container frameworks such as Nix [6] and
Docker [17]; cluster-computing systems like Hadoop [22],
Dryad [13], Spark [23], CIEL [18], or Scanner [20]; burst-
parallel software for “serverless” platforms, such as ExCam-
era [9], PyWren [16], gg [7], and R2E2 [8]; reproducible and
deterministic execution systems such as rr [19] and Determi-
nator [4]; and content-addressed and -centric networked sys-
tems, including BitTorrent, Git, IPFS, and NDN [10, 15, 25].

Given this substantial literature, the reader might reason-
ably wonder “what’s new here,” why “this time it’s different,”
and what this has to do with networking as traditionally un-
derstood. In our view, none of the above systems is equipped
to tackle the vignettes that opened this paper. The approach
we propose here is well-predicated, but we suspect different
enough to bear fruit in the areas we focus on.

An objective notion of correctness probably requires re-
producibility, even with adversarial input. For a distributed
version-control user to be able to ask “why” an artifact has the
contents it does and be assured of a correct answer (Scene 1),
or for a networked filesystem to throw away the original copy
of a file, knowing it can reproduce it on demand (Scene 2),
or for an insurance company to underwrite the correctness
of a cloud service’s results and pay out for wrong answers
(Scene 5), we’d like the system to enforce reproducibility on

arbitrary, perhaps buggy or adversarial, software. Few of the
systems above are intended for this, the closest being replay
debuggers (such as rr) that impose a substantial overhead,
in terms of slowdown and space to record a trace of machine-
generated nondeterministic inputs to be replayed later.

Fine-grained visibility into dataflow suggests an evolv-
ing AST, rather than a static DAG, may be necessary to
express “everyday” computations. Many cluster-computing
systems express jobs as a directed acyclic graph of func-
tions, and work to schedule functions efficiently on a cluster.
This model has proved extraordinarily helpful in large-scale
data processing, but less-so for general software whose data-
dependencies are only revealed at runtime—running such
tasks requires “over-capturing” inputs of which only a frac-
tion are used. We believe that fine-grained visibility into appli-
cation dataflow will be crucial for forensic inquiry (Scene 3)
and efficient use of shared infrastructure (Scene 4), which
suggests a more fine-grained model of computation. Fix’s
evolving computation (a DAG at any snapshot, but similar to
Lisp or lambda calculus in its dynamicity) is more amenable
to expressing the gamut of heterogenous computing tasks.

Difference in overheads. The latency required to start a
Docker container or Hadoop job is generally measured in
milliseconds at least—meaning nobody is threading these
types of modularity and isolation deeply into their software.
Fixpoint’s vastly lower overhead may help this sort of modu-
larity become more pervasive. And Fixpoint’s ability to run
arbitrary machine codelets (most of which will have come
from Wasm, itself a well-tested LLVM target alongside x86
and ARM) will likely make it easier to run arbitrary software.

9 Conclusion
In this paper, we presented a research agenda to put compu-
tation at the center of what networked computers and cloud
services do for their users. We argue that providing infrastruc-
ture with fine-grained visibility into application dataflow, an
objective notion of correctness, and a separation between I/O
and compute will open up new models of serverless “account-
ability” and enable agility and innovation on other axes. Many
open questions remain before these dreams might be realized,
but we are excited about opportunities to make progress and
hopeful that others will join in some of these directions.
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