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Safe Interactions with Foreign Languages through Omniglot

The past few years has seen a massive success story for systems
programming. Entire categories of bugs that used to plague systems
programmers—like use-after-free, data races, and segmentation faults—
have begun to completely disappear. The secret to this new reality is a set
of systems programming languages chief among them Rust—whose
powerful type systems are able to constructively eliminate these kind of
bugs; if it compiles, then it’s correct … or at least, will not contain use-after-
free or other memory safety errors. These languages are gaining
widespread adoption across industry [1, 2, 3] and academia [4, 5, 6, 7]
alike, and are adopted for ambitious and critical systems, such as new
high-performance compute libraries, distributed storage systems, and
operating systems.

Despite these successes, the reality is a little more complicated. There is
a great amount of software already written in other languages. And often,
external constraints such as certification requirements or developer
expertise force even new components to be written in other, less safe
languages. Therefore, an important feature for any new systems
programming language is its ability to easily and efficiently interact with
existing foreign libraries. Developers building new systems can leverage
existing native cryptography, mathematics, graphical, and other libraries
immediately, without waiting for them to first be ported to new languages
and without suffering a performance hit. They can incrementally migrate
existing systems, replacing components in a legacy C/C++ codebase
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with safe alternatives [1].

Unfortunately, interacting with foreign code can result in subtle, but
nonetheless devastating safety violations that re-introduce the very
concerns many developers are trying to avoid by using type-safe
languages. For example, foreign libraries may themselves include
memory safety vulnerabilities, such as OpenSSL’s infamous Heartbleed
bug [8]. When foreign code is invoked through a Foreign Function
Interface (FFI), it runs in the same address space and with the same
privileges as the host language. Therefore, vulnerabilities in native
libraries can affect the entire host program and break memory or type
safety guarantees.

While we are quick to reach for tools like process isolation, a system call
boundary, or a client-server model to solve this, these tools often only help
uphold memory safety, which is only half the battle. Each language has
specific invariants over its types (like permissible values) which its
compiler relies on when producing code. Ensuring that all types are
correctly inhabited goes beyond memory safety; it requires type safety. In
fact, memory and type safety are intertwined: a violation of one can easily
break the other. And finally, some program invariants—like whether
references can be aliased—require reasoning about both type and
memory safety. Interactions with untrusted code or between different
languages that violate these invariants can lead to undefined behavior
and, in turn, break other safety properties.

We present Omniglot [9], a new approach and framework we have
developed that can maintain both memory and type safety across
interactions with untrusted foreign libraries, in different settings: we
implement prototypes for Linux userspace applications and a Rust-based
kernel. In this article, we want to focus on illustrating the fundamental link
between memory and type safety through an example of interacting with
a foreign library and provide an intuition on how the Omniglot framework
works.

Breaking Memory Safety with Invalid Values

Before we can discuss how Omniglot enables safe interactions with
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foreign languages, we need to understand the types of invariants that
programming languages require developers to uphold, and why
conventional solutions such as memory isolation are insufficient. In this
section, we use a simple example to illustrate how breaking one of Rust’s
invariants—that of valid values—can in turn violate a range of other safety
properties (including memory safety) and break conventional isolation
techniques.

In Listing 1 we show an example of a C function and type definition, and
corresponding bindings for this type and function signature in Rust. We
define a C enum async_res_t to signal the completion state of an
asynchronous operation. In Rust, we define a corresponding type enum
AsyncRes with identical variants. Annotating this type with #[repr(C)]
ensures that the enum will have an identical representation to its C
counterpart. Finally, we define a function async_print in C, and declare
a corresponding foreign function binding in Rust.

Listing 1: Rust bindings for a C enum type async_res_t and C function
definition async_print.

Immediately, there is one oddity: the stubbed out async_print returns a
value produced by rand()—any integer value—while our enum only
has 3 variants. Surprisingly, this is valid C, as its enums are merely named
integer constants. The rest of the code, meanwhile, seems solid: the
async_res_t enum type has a one-to-one mapping from its C to Rust
representation, and the async_print function binding accurately
reflects the C function’s signature.

Unfortunately, these bindings are nonetheless subtly incorrect and can
lead to safety issues down the line. This is because C’s enums work
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differently from Rust’s enum types: while in C enums are merely named
integer constants, in Rust an enum type declaration creates a new type
which is limited to a fixed set of values. This means that, while it is legal in
C for an enum type to assume values that do not correspond to a
declared variant of this enum, this is considered undefined behavior in
Rust [10]. And interpreting the result of rand() as a value of the enum
AsyncRes type may well produce such an invalid variant.

Meanwhile, avoiding undefined behavior is a worthwhile goal: Rust’s
unsafe code guidelines state rather bluntly that, in the presence of
undefined behavior, “the program produced by the compiler is essentially
garbage” [11]. In fact, by extending the above example slightly, we can
see how this violation of Rust’s restriction on valid values can result in a
range of other safety issues. For this, consider the wrapper around the
async_print foreign function of Listing 2.

Listing 2: A wrapper around the FFI bindings from Listing 1. Rust requires
various invariants to be maintained for correct program behavior: for
example, a type may only have a limited set of valid values. In this
example we violate this type-safety invariant, which can in turn escalate
into a violation of memory safety.

The wrapper function print() polls the async_print() function until
it returns a value other than PENDING, and then returns the
AsyncResult return value alongside the msg parameter in a new enum
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called PrintResult. This outer enum has two variants: it represents the
result of an asynchronously printed a byte array, or synchronously printed
null-terminated CString value.

Again, the snippet above seems unproblematic at first. Unfortunately,
when paired with the violation of Rust’s invariants on valid values above, it
will perform an out-of-bounds memory access. This is due to an
optimization called niche filling. When considering the underlying memory
representation of the enum PrintResult type (assuming a 32 bit
system), it holds the following components:

• a discriminant value indicating the enum’s active variant (4 bytes),

• in case of PrintResult::Async being active, the enum AsyncRes
value and a &[u8] slice pointer and length (12 bytes),

• and, in case of PrintResult::Sync being active, a pointer to a null-
terminated CString allocated on the heap (4 bytes).

This means that the size of the PrintResult type should be 16 bytes.
However, Rust knows that the only values an enum AsyncRes can
assume are 0, 1, or 2. Therefore, it can combine this field together with
the outer enum’s discriminant value and reduce the overall size of this
type to 12 bytes.

Yet, when we break the assumption that the AsyncRes type will only
contain values from 0 to 2, the above optimization can cause the program
to misbehave: for instance, assuming the call to rand() within the
async_print function returned 3, then Rust would store this value as
the PrintResult type’s discriminant. However, reading this value back,
it would incorrectly assume that the PrintResult::Sync variant is
active, and interpret the stored slice pointer as a pointer to a null-
terminated C string, potentially reading other out-of-bounds data or
experiencing a segmentation fault.

Notably, many existing approaches to safely interact with foreign or
untrusted libraries would not prevent the above soundness violation: the
out-of-bounds memory accesses occur from within the Rust domain itself!
Even if a foreign library was prevented from accessing any of Rust’s
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memory, the soundness violation could still occur. This is a violation of
type safety, which has escalated to a violation of memory safety.

Next to valid values there are many more safety-critical invariants that
Rust requires a developer to uphold: for instance, a defining feature of
Rust is its concept of aliasing XOR mutability, which disallows any aliased
references from being mutated. Similar to the invariants around valid
values, these safety properties are difficult to reason about and maintain
across complex interactions with foreign code. Thus, instead of
considering all individual invariants at any point where Rust interacts with
foreign code, we need a systematic approach to reason and maintain
them.

When looking at the above example, the fundamental error—leading to
the subsequent soundness violations and memory safety issues—was
that we trusted the proclaimed type of the C function signature. And while,
in this particular case, the fault lies within the bindings failing to accurately
model the differences between C’s and Rust’s respective enum types (the
appropriate type on Rust’s side would have been a c_int), these issues
are commonplace: for instance, even types as simple as booleans have
different (or missing) definitions depending on the C standard used. And
beyond that, there are few guarantees that a given foreign library is itself
correct and adheres to all of its language’s requirements.

Conventionally, developers using Rust’s native, unsafe FFI will need to
reason about the entire program and ensure that any Rust code, foreign
code, and their composition is sound. While the Rust compiler validates
soundness of safe Rust code, it cannot do so for interactions with foreign
code. Omniglot does not model the entire program, and takes a different
approach: instead of statically reasoning about the behavior of foreign
code, it reduces the assumptions that Rust places on it, and employs
runtime validations to ensure that any cross-language interactions do not
break Rust’s invariants. In this article, we want to provide an intuition for
how this approach captures the soundness violations of the above
example. Omniglot combines this method with other mechanisms to
enable safe interactions with entirely untrusted foreign libraries; we
encourage reading the paper for more details [9].

Memory Safety is Merely Table Stakes | USENIX about:reader?url=https%3A%2F%2Fwww.usenix.org%2Fpublications...

6 of 10 6/16/25, 15:52

about:reader?url=https%3A%2F%2Fwww.usenix.org%2Fpublications%2Floginonline%2Fmemory-safety-merely-table-stakes%23reference-9%23reference-9
about:reader?url=https%3A%2F%2Fwww.usenix.org%2Fpublications%2Floginonline%2Fmemory-safety-merely-table-stakes%23reference-9%23reference-9


We illustrate Omniglot’s approach in Figure 1: our goal is to provide a
foreign function binding for the async_print function, returning an
instance of the enum AsyncRes Rust type, but without the potential
soundness violations shown in the previous sections. In this setting, we
cannot prevent the C function from returning a value not part of its
async_res_t enum definition. However, when this happens, it should
result in an explicit error indicating that the C library violated its API
contract, instead of introducing undefined behavior in the Rust host
program.

Figure 1: Omniglot interposes on interactions between Rust and foreign
code. In this example, Omniglot models a foreign function through a
weaker function binding "fn async_print'() -> c_int" and restores the
intended function return type through a runtime check in the wrapper
"async_print_wrapped".

Instead of invoking a foreign function directly (illustrated in the top half of
Figure 1), a developer uses Omniglot’s modified version of the rust-
bindgen utility to generate a set of safe foreign function bindings from a
C header file, producing wappers like async_print_wrapped in Figure
1. These bindings—together with an Omniglot runtime library—internally
invoke the foreign functions, surrounded by a range of runtime and static
checks that catch and prevent potential violations of Rust’s invariants
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before they can manifest in undefined behavior.

For the issue of valid values in particular, it uses a trick: instead of
declaring the foreign function’s signature faithfully—with the exact types
that a developer would want to use—it declares another function symbol
(fn async_print') with a different, more permissive set of types.
These types have the same size and layout constraints as their original
counterparts, but carry fewer invariants that could be violated by foreign
code. For instance, instead of representing C’s async_res_t enum
using the Rust enum AsyncRes type, we can represent it using a simple
C integer (c_int). This type has identical size and alignment to that of the
enum AsyncRes, but any bit-pattern represents a valid value of this type.
This prevents foreign code from violating Rust’s invariants by returning
unexpected values.

Finally, the wrapper inspects and validates values returned by foreign
code. If it corresponds to a valid value of the original return type, it
converts the weaker c_int type back into an enum AsyncRes. And if it
does not correspond to any AsyncRes variant, instead of introducing
undefined behavior, the wrapper returns an error indicating that foreign
code returned an unexpected value.

In addition to validating types, Omniglot also addresses Rust’s invariants
around memory safety and aliasing. For instance, it integrates with a
memory isolation primitive (such as x86′s Memory Protection Keys or the
RISC-V Physical Memory Protection unit) to prevent buggy or malicious
foreign libraries from writing to any of Rust’s memory. And because Rust’s
borrow checker cannot reason about pointers passed through foreign
code, we introduce a mechanism that upholds Rust’s aliasing restrictions
by statically reasoning about when references are allowed to read from or
write to foreign memory. We explain these mechanisms in more detail in
our paper [9].

Using the above approach, alongside other mechanisms that are
responsible for maintaining Rust’s invariants around memory safety and
aliasing, Omniglot can provide developers with a safe API to interact with
foreign libraries that is similar to Rust’s native, unsafe FFI, without having
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to reason about the entire program.

In our paper, we evaluate Omniglot for use in both Linux userspace
applications (making use of x86 Memory Protection Keys to isolate
foreign libraries’ memory), and for resource constrained embedded
systems by integrating it into the Tock embedded OS kernel. We show
that Omniglot works for a range of libraries libraries such as cryptography,
compression, image decoding, file system and TCP/ IP networking.

While Omniglot does introduce some runtime overhead, we find that it
performs comparably to existing memory isolation based approaches
while delivering a stronger set of safety guarantees (adding 0% to 3.4% in
overheads across our benchmarks). In addition, Omniglot can perform
significantly better compared to previous approaches that utilize Inter-
Process Communication (IPC) and serialization to exchange data to
interact with untrusted components.

We will publish our research prototype of Omniglot in the coming weeks
and will update this article once it becomes available.
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