Running Consistent Applications Closer to Users with
Radical for Lower Latency

Nicolaas Kaashoek
nicolaas@princeton.edu
Princeton University
Princeton, New Jersey, USA

Amit Levy
aalevy@princeton.edu
Princeton University
Princeton, New Jersey, USA

Abstract

Running applications close to users—in nearby datacenters,
at edge points of presence, or in on-premises clusters—is
attractive, as it reduces end-to-end latency. Moving strong
consistent applications closer to users is difficult, as they
incur high latencies either when accessing, or coordinat-
ing, their storage system. This restricts such applications to
running co-located with their data, in a datacenter. Radical
allows these applications to leverage the latency benefits
that come from running near users. Radical uses its new
LVI protocol to perform all necessary coordination in a sin-
gle request. This request guarantees linearizability with a
combination of locks, a validation step, and write intents.
Radical hides the latency of the LVI request by overlapping
it with speculative execution of the application. Our eval-
uation shows that Radical achieves 84-89% of the latency
improvement obtainable by moving out of the datacenter,
while providing Linearizability.

CCS Concepts: - Computer systems organization —
Cloud computing; - Information systems — Cloud based
storage.

ACM Reference Format:

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wy-
att Lloyd. 2025. Running Consistent Applications Closer to Users
with Radical for Lower Latency. In ACM SIGOPS 31st Symposium
on Operating Systems Principles (SOSP °25), October 13-16, 2025,
Seoul, Republic of Korea. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3731569.3764831

“Work completed while at Princeton University.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764831

Oleg A. Golev*
oleg@sentient.foundation
Sentient Foundation
San Francisco, California, USA

Austin T. Li*
atl63@cornell.edu
Cornell University

Ithaca, New York, USA

Wyatt Lloyd
wlloyd@princeton.edu
Princeton University
Princeton, New Jersey, USA

1 Introduction

Cloud infrastructure is changing to reduce the latency be-
tween users and execution locations. New datacenters, edge
points of presence, and on-premises clusters are opening up
across the world [58, 59, 63, 64]. This infrastructure makes
it possible to deploy an application across a wider range of
locations, such that nearly every user is close to one.

However, strongly consistent applications such as social
media, booking sites, and online forums, cannot easily make
use of all these new locations, as that will increase latency
over the status quo. These applications typically execute in
either a primary datacenter, or a handful of datacenters, that
have fast access to the strongly consistent storage system
they use. If the new locations do not have replicas of the
storage system, then they incur the high latency between
the location and the storage system for every access. If the
new locations do have replicas of the storage system, then
all accesses to the storage system will become unavoidably
slower as they must coordinate with more replicas that are
further apart [15, 43].

The Radical framework overcomes the challenges of pro-
viding both strong consistency and low latency to applica-
tions running close to users by using speculative execution
and a novel protocol for providing Linearizability. Radical
keeps the storage system in a primary datacenter, but aug-
ments it with eventually consistent caches in each appli-
cation deployment location. It runs the application spec-
ulatively against a cache, in parallel with the new Lock-
Validate-WriteIntent (LVI) protocol, which handles coordi-
nation between executions, caches, and the storage system.
The speculative result is returned if the protocol determines
it is linearizable; otherwise, Radical executes the application
in the primary datacenter and returns that result.

To minimize end-to-end latency, the LVI protocol must
be as fast as possible, to maximize the amount of overlap
between it and the speculative execution. For this reason, the
LVI protocol sends only a single LVI request to the storage
system. The protocol must overcome two challenges—late

https://orcid.org/0000-0003-0436-0671
https://orcid.org/0009-0008-7878-9992
https://orcid.org/0009-0005-3595-2866
https://orcid.org/0000-0003-1479-8917
https://orcid.org/0000-0002-4870-0490
https://doi.org/10.1145/3731569.3764831
https://doi.org/10.1145/3731569.3764831
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764831

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

reads and speculative writes—in order for the LVI request to
be able to perform all the necessary coordination.

The first challenge is handling reads that happen late in
an execution. Validating the consistency of reads from the
eventually consistent cache as they occur narrows the over-
lap between the speculative execution and the round trip to
the storage system. Radical overcomes this by determining
which items the application will access before it executes. To
do so, it uses static analysis to derive the read/write sets of
the application based on its inputs. Radical’s analyzer runs
on each request handler in the application independently;
in a social media application, this means the handler for
posting, the handler for following, the handler for reading a
timeline, and so on. The protocol then validates the versions
of the items returned by the cache against the versions in
the storage system. If any are stale, it executes the handler in
the primary datacenter and returns that result, invalidating
the speculative one.

Radical’s implementation operates on serverless functions,
which are particularly amenable to this analysis. Serverless
functions are inherently stateless, so each of their accesses to
storage must be explicit; this makes it easy for the analyzer
to find and interpose on any access made by an application.
Each handler can be implemented as a separate function, as
demonstrated by prior work that shows that all microservices
can be decomposed into serverless functions [36]. This in
turn means that Radical supports any such application.

The second challenge is handling speculative writes. Ap-
plying them to the storage system without knowing if the
speculation succeeds breaks consistency. But, waiting until
speculation succeeds and then sending them adds a second
round trip to the storage system that negates the latency
benefit of being closer to the user. Radical’s LVI protocol
uses a combination of locks and deterministic re-execution
to avoid this additional round trip.

The protocol acquires read or write locks on each item an
execution will read or write as part of the single LVI request.
The write locks allow the speculative execution to be released
to the user without coordinating with the storage system
again because they ensure no future reads will succeed until
this write is eventually applied. Yet, this introduces a new
challenge where the failure of an execution location would
leave items locked forever and the application unavailable.

Radical ensures writes are applied and locks are released
promptly using write intents that trigger deterministic re-
execution. Write intents are setup during the handling of the
LVI request if a function might write to storage. When they
are, the handler creates a timer that waits for a followup from
that execution; if the followup never arrives, it re-executes
in the primary datacenter. The read locks acquired by the
initial execution ensure this re-execution sees the same state
from the storage system. To guarantee that this re-execution
results in the same writes, Radical requires applications to

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

be deterministic, which it achieves by compiling them to a

subset of the WebAssembly language.

Together, these mechanisms allow the LVI protocol to
coordinate between an execution location and the storage
system in a single request that overlaps with execution for
lower latency. For an application to run on Radical and real-
ize this lower latency, it must meet three requirements. The
first two are mentioned above: applications must be decom-
posed into serverless functions that are then compiled to
deterministic WebAssembly. The third is that Radical only
benefits request handlers that have a high enough execution
time to hide the latency of the LVI request. Our evaluation
shows that handlers that take at least 20 ms benefit from
Radical.

We evaluate Radical using a set of 3 popular microservices—
a social media site, a hotel booking service, and a online
forum—that we decompose into 15 serverless functions and
deploy across five locations with varying latencies to the
primary copy of the data. For each application evaluated, the
static analysis was able to extract the read/write sets. We find
that Radical is effective: it runs on existing serverless infras-
tructure using existing storage systems, and delivers 84-88%
of the possible latency improvement obtainable for these
applications. These improvements vary according to appli-
cation and are between 28-35%. We also evaluate the added
cost imposed by Radical from the addition of the caches, and
find it to be 1.3 times the baseline.

In summary, this paper makes the following contributions:
o Radical: a framework for enabling applications that require

strong consistency to leverage new deployment locations

to run closer to users for lower latency.

o The LVI protocol, which manages communication between
executions, caches, and the storage system to provide Lin-
earizability in a single round trip.

e An evaluation of Radical across a set of applications that
demonstrates its practicality and effectiveness.

2 Motivation

New cloud locations are opening up around the world, mak-
ing it possible to deploy applications closer to users than
before. Hyperscale providers like Amazon and Microsoft
are opening new datacenters across the globe [5, 9]. At
the same time, providers like Akamai and Cloudflare of-
fer customers the option to deploy their applications at the
edge [1, 13]. Additionally, many organizations are turning
to on-premises clusters for privacy concerns and cost effi-
ciency [26, 32, 51, 60]. In theory, these execution locations
should give applications an opportunity to improve end-
to-end latency by deploying instances as close to users as
possible.

Today, however, this opportunity is unavailable to a broad
class of applications. Social networks, forums, and messag-
ing apps which must order posts and messages consistently
across users [41], as well as booking services, which should

Running Consistent Applications Closer to Users with Radical for Lower Latency

300 — Datacenter I Global

Latency (ms)
(3]
(=3
(=}

_
(=3
(=]

VA CA IE DE JP

Figure 1. Comparing the latency of running an application
against a geo-replicated storage system or a single primary
copy of the data. Red lines represent the best possible latency.

avoid double booking resources or discarding confirmed
reservations, are user-facing and, thus latency sensitive [18],
while relying on strong consistency to operate correctly. De-
ploying them across multiple execution locations closer to
users does not currently improve latency over a centralized
deployment.

Using multiple execution locations while leaving the data-
store in a single centralized location does not improve per-
formance and, indeed, is likely to hurt performance. While
in a totally centralized deployment, end-user access to the
application instance might be slow, applications are close
to the datastore and, thus, fast. Conversely, by moving only
applications closer to users, end-user latency to the appli-
cation might be low, but each storage operation from the
application is as slow as the single round-trip from the user
in the totally centralized case. The impact of these requests
on end-to-end latency is further magnified because a single
user request often creates several requests to storage.

A more plausible option is to use a consistent, geo-replicated
storage system, such as Amazon’s Multiregion DynamoDB [8]
or Google’s Spanner [23]. This could allow each execution
location to have low-latency access to a storage replica.
Unfortunately, the PRAM impossibility result tells us that
for strong consistency, the sum of read and write latencies
must be greater than the maximum distance between repli-
cas [15, 43]. This impossibility result means that end-to-end
latency is bounded by the distance between replicas—in a
geo-replicated setting, this distance is large, and the latency
high.

This leaves a large performance gap on the table. Figure 1
shows the latency for an end-user in five different global
locations—Ashburn, Virginia (VA); San Francisco, Califor-
nia (CA); Dublin, Ireland (IE); Frankfurt, Germany (DE); and
Tokyo, Japan (JP)—accessing a simple application that rep-
resents the base case scenario for a global deployment. Re-
quests execute ~100 ms of computation and a single storage

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

read. We deploy this application two ways: a totally central-
ized deployment where both the application and data storage
are in a single datacenter (VA); and a distributed deployment
with a geo-replicated, consistent storage system (DynamoDB
global tables in VA; Columbus, Ohio; and Portland, Oregon)
and application instances deployed in each global location.
The red line on the graph represents the latency of running
the application in that region, accessing local—not globally
consistent—storage. Using local storage represents the best
possible latency for the application, but does not provide
strong consistency.

As expected, users close to the centralized deployment
experience the lowest latencies while other users experience
higher latencies the farther away they are. For the farthest
away users, latency is more than double that of the closest
user. Importantly, though, placing consistent replicas close to
end-users does not improve user-perceived latency because
storage operations still incur the cost of global coordination.
In most cases, geo-replication performs worse than a centrally
deployed application and data store.

Global coordination is unavoidable, but as we demonstrate
with Radical, it is nonetheless possible to get close to the low-
est latency in many cases. For both a centralized deployment
and a geo-replicated storage system, the key problem is that
the high cost of coordination blocks progress on executing
the application, even when coordination turned out not to
be necessary.

Radical avoids the downsides of existing approaches by
ensuring that replicas communicate with the datacenter in
a single message that guarantees strong consistency. This
message is sent in parallel with the speculative execution of
the application, which allows Radical to cope with the PRAM
impossibility result by overlapping their latencies. The com-
bination of this single message and speculative execution
enables Radical to provide applications with the latency ben-
efits of running near their users without compromising on
consistency.

3 Design

Radical is a framework for running strongly-consistent appli-
cations near-users, allowing them to take advantage of the
lower latency that comes from doing so. To make this possi-
ble, Radical uses a combination of static analysis, speculative
execution, and the new LVI protocol. It uses static analysis
(§ 3.3) to determine which items in storage a function will
access. The LVI protocol (§ 3.2) sends this information to the
near-storage location while the function executes specula-
tively on a cached copy of the data. The protocol ensures that
any updates made to near-user storage are durable (§ 3.4)
and that any results exposed to users are Linearizable (§ 3.6).

3.1 Architecture

Radical’s architecture is illustrated in Figure 2, which depicts
near-user and near storage locations. Example near-user

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Near-User Location

Near-Storage Location

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

Near-User Location

e - e N\ - 2
8) Radical) LVI Server Radical
Function Execution) w1 (7 D v Function Execution)
(LVI Handler ¥
[] Request J Request []
\N/’ ! Followu T Followu ! '//, !
Storage Radical |, L J Followup Handler ¥ = . [Radical | [Storage
8) Librar Runtime 3 R\ (" (Runtime)| Library) |
. G\B
Cache Primary Storage ackup Cache
Data) (Write Intents Data unctions| Data |)
Key | Value | Version Execution ID | Status Key | Value | Version |4 Key | Value | Version
8) - \ J - ’) [%

- J

Figure 2. The architecture of Radical. Radical’s runtime begins by executing f"™ to find the read/write set and sends it to the
near-storage location as part of the LVI request while speculatively executing the f, which communicates with the cache
through Radical’s storage library. The LVI request is processed by the LVI server, which sets up write intents, and runs a
backup copy of f on the same inputs if validation fails. If validation succeeds, the runtime sends a followup to the server

containing the speculative writes made by f.

locations include a nearby datacenter, an edge point of pres-
ence, or an on-premises cluster. Client requests are routed to
Radical in a near-user location, which consists of two compo-
nents: a runtime and a storage library. The runtime executes
the application speculatively and communicates with the
near storage location. The application communicates with a
cache through the storage library. This cache does not need
to be durable or strongly consistent.

There are many near-user locations in Radical, spread out
across the globe. Each of these locations communicates with
a single near-storage location through the LVI protocol. The
near-storage location runs a server dedicated to handling
LVI requests and followups from the near-user locations.
The near-storage location also hosts backup copies of the ap-
plications and invokes them when the validate step (§ 3.2) of
the LVI protocol fails. The near-storage location is where the
primary copy of the data resides, stored in a storage system
that provides Linearizability and durability. Example storage
systems that fulfill these requirements include DynamoDB,
BigTable, and CosmosDB [20, 25, 56].

Radical stores two additional pieces of data: version num-
bers, and write intents. Version numbers are used as part
of the LVI request to check whether a cache is up-to-date.
They are stored as part of the data, and Radical interposes
on each write request to increment them whenever an item
is updated. Write intents are a mapping from an execution
id to a status bit, which it uses to ensure that updates made
to near-user caches reach primary storage. They are stored
in a separate table.

The near storage location and the near-user locations do
not need to be run by the same cloud provider. However, as
data is shared between the two locations, developers must
trust both the near-user and near storage locations. In ad-
dition, Radical’s use of deterministic re-execution requires

that the near-user and near storage locations have the same
serverless runtimes.

3.2 LVI Protocol

Radical’s LVI protocol is designed to allow applications that
require strong consistency to take advantage of the latency
improvements that come from running in a near-user loca-
tion. The protocol must, therefore, provide Linearizability
without incurring a significant latency overhead.

The first step in the protocol is function registration. Ap-
plications using Radical are split into independent, serverless
functions that each handle a single request. For example, a
simple social media application might have one for making
a new post, one for following a user, and one for viewing a
user’s timeline. The LVI protocol is part of each execution
of an individual function.

When users upload or update a function f, Radical runs
a static analyzer on that function (§ 3.3). The output of this
step is a new function, f™, that takes the same inputs as
the original and returns the read/write set—the collection of
items it will access—for that specific execution. This output
function is stored alongside the function in each near-user
location.

Figure 3 shows the steps of the LVI protocol when a func-
tion is invoked by a client after registration. First (1), Radical
invokes f"™ to get the read/write set for the function. Then,
it begins speculatively executing f itself (2a) using the near-
user cache. Simultaneously, it gathers the local versions of
each item, which it includes in a LVI request, sending the
request to the near storage location (2b). Radical delays up-
dates to the storage near-user until the LVI request returns;
this includes the increment of the version number. Radical
delays responding to the client until it receives a response
from the near-storage location and f finishes executing.

The protocol continues when the request arrives at the
near storage location (4). That location acquires locks for

Running Consistent Applications Closer to Users with Radical for Lower Latency

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

2b. Send
TNear User VLW

7a. Return| | 8a. Send
A | toclient) | Followup

8b. Update| [9b. Return
Py Cache to client

lN ear Storage :

Y 4. Get | [5. Validate |validate [6a.Setup | Wait “ [9. Apply
Locks }[Step Success Followup 10. Unlock
Validate

L =
Tl 6b. Run f 7b. Unlock

Figure 3. The steps of the LVI protocol. Execution begins in a near-storage location. Radical executes the function speculatively
in the near-user location while the near-storage location continues the protocol based on the success or failure of validation.

each key (§ 3.6), and (5) compares the versions from the near-
user cache to those in the near storage storage. We refer to
this comparison as the validate step. If validation succeeds
and there are items in the write set, the near storage location
creates a write intent (6a)—an object in storage that signals
the function may perform writes. It also starts a timer to
check that write intent, which is used to guarantee that
any updates made to caches reach the primary copy of the
data. The near storage location then returns to the near-user
location.

If the check in (5) fails, the function is run in the near-
storage location (6b), and then locks are released (7b). The
results of this execution, along with items detected as stale
in the validation step and those updated by the function, are
sent back to the near-user location, which it uses to update
its cache (8b). The near-user location then returns the result
from the backup function to the client (9b).

Once the near-user location has finished executing the
function and has received the result of the LVI request from
the near storage location, it returns back to the user (7a). If
the function wrote to any of the items, Radical sends the
updates to the near storage location (8a). It does so after
returning to the client. This update is the write followup. If
the followup never arrives, Radical leverages deterministic
re-execution (§ 3.4) to replay the function. In either case,
Radical then applies the updates (9) and releases any held
locks (10).

Latency improvements. When the validation step of the
LVI protocol fails, Radical provides similar latency to running
in the near-storage location because the function executes
immediately after validation. When validation succeeds, Rad-
ical provides lower latency than running in the near-storage
location. It does so by sending only one request, the LVI
request, whose latency is observable to users between the
near-user and near storage locations, and that is overlapped
with the speculative execution of the function. When the
function execution is shorter than the LVI request, the la-
tency reduction from running near the user is proportional
to the execution time of the function. When the function

execution takes as long or longer than the LVI request, the la-
tency reduction is the round-trip time between the near-user
location and the near-storage location.

Managing caches. Radical relies on the LVI request to both
handle data misses and updates for the near-user caches. In
(2), if an item is not present in the cache, Radical includes a
version number of -1 in the LVI request, and does not run the
function speculatively, as validation is guaranteed to fail. The
response to the LVI request includes the up-to-date values
and version numbers for all the items identified as stale in (5).
Upon receiving this response, Radical updates the cache with
these values. The process of updating a cache on a version
mismatch means that caches do not need to be durable—even
if all cached state is lost, it will gradually be recovered with
successive LVI requests. Instead, Radical uses write intents
and deterministic re-execution (§ 3.4) to ensure updates reach
primary storage, which then provides durability, as such
storage systems typically have mechanisms to survive nearly
all non-catastrophic failure scenarios.

The gradual bootstrap process for caches has a latency
penalty, as during that time LVI requests are guaranteed to
fail. This latency penalty can be mitigated with extensions
to the design. For example, our implementation of Radical
uses persistent storage for the caches so that they do not
need to bootstrap from scratch in the case of a failure.

3.3 Static Analysis

The LVI protocol uses the read/write set to perform the
validation step, which Radical determines using static analy-
sis [24]. When a client registers a function f with Radical,
the analyzer extracts a f™ that takes the same inputs and
returns the set of the read and write calls that { will make.
The analyzer extracts this function through a combination
of symbolic execution and dependency analysis [34, 38].

To derive f™, the analyzer symbolically executes f. Tradi-
tionally, symbolic execution is used to determine constraints
on the inputs to a function that will result in its execution
reaching some undesirable error state. Radical uses the same
technique, but looks for access to storage rather than errors;
serverless functions make this possible, as they are state-
less by default. For this reason, all accesses to storage are

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

explicit—this makes them easy for the symbolic execution
engine to track.

For each access to storage, Radical’s analyzer determines
the set of constraints on the input required to reach that
access. Additionally, it tracks the dependencies of each ar-
gument to the storage call to determine how to construct
them. The combination of the constraints and dependencies
form the basis of f™, which is derived when a function is
registered with the system. f™ contains only the pieces of f
needed to determine the final inputs to read and write calls.
Then, when a function is executed, f™ runs on the same
inputs as f, following the same path through the function
that f will to determine the exact inputs to each read and
write call.

Failure case. Radical’s analyzer may not succeed. For one,
symbolic execution is not guaranteed to terminate. This is
unlikely to occur given the simplicity of serverless func-
tions, but is possible. Additionally, some functions require
significant computational work in order to compute the de-
pendencies of their reads and writes. In these cases, running
f™ may take as long as f; this adds a significant latency
overhead when compared to running near storage as f™
and f are run in series.

In situations like these, the analyzer either times out or
returns an error. Radical handles these errors by running the
function in the near-storage location in all cases.

Dependent accesses. One design pattern present in some
stateful applications is dependent accesses. Consider a simple
function that reads from one key and uses that result as input
to a second read. In this case, the analyzer has no way to
determine the input to the second read ahead of time. Radical
handles this case by running depended-upon reads in the
derived function. These reads run against the local cache to
determine what keys will be read or written later. This is
safe: if the first read returns stale data, the validation step
will catch it. If the first read is not stale, then it is guaranteed
that the following reads will be rejected at the validation
step as well.

3.4 Deterministic Re-execution

All writes made speculatively to near-user caches must reach
primary storage, and Radical uses the write intents setup
by the LVI protocol and deterministic re-execution to do so.
After the validation step of the protocol, if the write set for
the function is non-empty, the near-storage location creates
a write intent, a mapping from the execution id for that
function to a status. It stores the intent in primary storage
and starts a timer longer than the expected execution latency
of the function, then waits for a followup containing the
updates from the near-user location to arrive.

Now, there are two possibilities: first, the near-user loca-
tion runs to completion and successfully sends the followup
to the near-storage location. The near-storage location then

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

writes the updates from the followup to storage—which is
durable—and then marks the intent as completed.

The second option is that the followup request never ar-
rives, due to a failure either at the near-user location or in
transmitting the followup. The timer created in the near-
storage location handles this case: when it expires, the near-
storage location checks the write intent for the correspond-
ing execution and sees if it has been handled. If it has not,
Radical executes the function in the primary datacenter and
applies the updates it makes directly to storage and then
marks the intent as completed. Whether the intent handled
by re-execution or a follow-up, the near-storage location
now removes it from storage.

For this to be correct, the replay of the function must be
identical to the original execution. Radical ensures this by
requiring that functions be deterministic. There are a variety
of ways of achieving determinism in practice, from relying
on developers [46] to dynamically recording all sources of
non-determinism [54]. Radical takes a simple approach: it
runs functions in a sandbox with limited sources of non-
determinism. Specifically, our implementation of Radical
requires functions to be compiled to WebAssembly and runs
them in a runtime with no access to timers or randomness.
The 5 applications we implemented for our evaluation de-
composed into 27 functions, none of which relied on a source
of non-determinism.

3.5 Interacting with external services.

A single request in Radical can result in two executions of
the corresponding function: either because of a mismatch as
part of the LVI request, or because a follow-up is delayed.
The potential for double execution, combined with functions
needing to execute deterministically, requires that functions
take precautions when interacting with external services
beyond storage. If none are taken, then the same service may
be invoked twice for a single function, which may be unsafe,
such as a payment API being invoked twice double charging
the user.

Radical restricts the kinds of services that a function can
communicate with, and requires that developers take steps
to make that communication safe. First, only services that
have mechanisms in place to provide at-most-once semantics
are safe to call. If a service does not have such a mechanism,
then invoking it twice can leave behind different side-effects,
breaking the determinism requirement imposed by Radical.
Many existing services provide these mechanisms, as unre-
liable networks and failures can cause them to be executed
twice as is: the response from the payment processor may
be dropped by the network, and then the request retried, for
instance. As an example, Stripe [11], a popular payment pro-
cessing service, uses an IdempotencyKey [6]. If a function in
Radical needs to communicate with an external service, de-
velopers must ensure that they are using such a mechanism
in order to ensure the function can execute deterministically.

Running Consistent Applications Closer to Users with Radical for Lower Latency

3.6 Validation, Locking, and Write Intents for
Linearizability

Radical provides the same consistency as the primary storage:
Linearizability [33]. Linearizability ensures there exists a
legal total order over all operations that is consistent with
the real-time ordering of operations, i.e., if op; ends before
op, begins then op; must be ordered before op,.

We review at a high-level how Radical provides Lineariz-
ability using the LVI protocol. There are three execution
paths for a function in Radical:

1. it runs entirely near-user; validation succeeds and the
followup succeeds

2. it runs near storage; validation fails and invalidates the
speculative result.

3. it runs both near storage and near-user; validation suc-
ceeds and the followup fails

Radical holds locks in each of these cases. As shown in
Figure 3, locks are acquired before the LVI protocol performs
the validation step near storage, and are held for the duration
of a function’s execution. Each LVI request acquires a read
or write lock per item included in the request; the lock type
is determined by the result of the static analysis. Locks are
acquired in parallel and sorted lexicographically to avoid
deadlocks. Locks are stored in primary storage storage for
fault tolerance. The locks are released when the write fol-
lowup arrives or after deterministic reexeuction completes
if the followup is late.

Holding these locks limits the parallel execution of func-
tions both near-user and near storage. While locks are held
near storage, all near-user executions perform a LVI request,
and the locks ensure that if two such executions write the
same keys, only one can proceed. Others have to wait until
the lock holder’s followup reaches the near-storage location.
Using read-write locks helps Radical mitigate this overhead
for read-heavy workloads. For write heavy workloads, if they
have a low skew, most functions can run in parallel.

Consistency when validation succeeds and the followup
succeeds. When locks are acquired and then validation suc-
ceeds, Radical returns a LVI success message to the edge (af-
ter committing the write intent). The validation step ensures
that the edge execution reads values that are currently visi-
ble in the datacenter. The write locks ensure that the writes
from this edge execution will be visible to any other execu-
tions that start after it returns as required by Linearizability;
they are only released after the writes from this function
reach the near-storage location. Because version numbers
are incremented along with an item update, the write lock
also guarantees that other executions will see the updated
version number. The read locks ensure the keys read by this
function are not being updated by some other edge execu-
tion; if they were, that near-user execution would hold write
locks that would prevent this function from acquiring read
locks.

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Thus, the combination of locks and validation ensures
Linearizability when the LVI request succeeds. Validation
ensures the edge execution uses the value present in the dat-
acenter. The use of read/write locks ensures a partial order
of operations with writes happening exclusively and reads
happening potentially concurrently. This partial order can
trivially be extended to a total order by ordering reads of
the same write by their invocation time. That total order
is trivially consistent with the real-time order for reads of
the same value by definition. And it is consistent with the
real-time ordering for all other operations due to the read-
/write locks; if op, finishes in real time before op, begins then
op,.lock_release < op,.end < op,.begin < op,.lock_acquire.

Consistency when the LVI protocol detects a mismatch.
If the validation step detects a version mismatch, Radical
immediately begins executing the function in the near stor-
age location. As locks are acquired prior to doing the check,
they are already held prior to execution starting and are
not released until it finishes. Thus, the use of read/write
locks provides Linearizability following exactly the same
argument as when the LVI request succeeds.

Consistency when validation succeeds but the followup
is late. The third and final case to examine is when both
the edge and the datacenter execute the function. This only
occurs when the LVI request succeeds but its write followup
to the datacenter is late, either because of failure or because
it is slow. When this happens there could be two writes and
therefore two version numbers for each key in the write set.
Radical precludes this difference by marking the intent as
handled whenever the near storage execution finishes or a
followup arrives, discarding any late followups. The write
that is applied falls into one of the two categories argued
above and, thus, this final case also provides Linearizability.

Proof of Linearizability. The above provides an intuition
as to why Radical provides Linearizability. We provide a
more formal proof of Linearizability at a Zenodo record with
the following identifier: doi:10.5281/zenodo.17009554.

4 Implementation

We implemented a prototype of Radical on top of AWS
Lambda [7], and use an EC2 [3] server to handle the LVI pro-
tocol (LVI server), with DynamoDB [25] as a storage system.
While Radical’s design can achieve better performance with
a custom serverless platform that internalizes much of Rad-
ical’s functionality, many existing serverless platforms are
amenable already. By implementing Radical on top of exist-
ing cloud platforms, we show that this design is practical for
applications today. Moreover, by evaluating this prototype
on AWS, we show that even a suboptimal implementation
can achieve significant performance improvements.

We implement Radical in three components: the near-user
runtime and storage library, the LVI server, and the static

https://doi.org/10.5281/zenodo.17009554

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

analyzer used to derive f". The near-user runtime is imple-
mented in ~1000 lines of Rust. It builds on the Lambda Rust
runtime, and manages the cache near-user, executes f™ and
the compiled WebAssembly functions, and communicates
with the LVI server. The runtime uses a Lambda extension
to send the followup requests to the LVI server.

The LVI server is implemented in ~2000 lines of Go, and
handles LVI requests: it performs the validation step, sets
up write intents, acquires and releases locks, and applies the
updates sent by near-user functions. It uses DynamoDB to
get the versions of items and to store write intents. Locks
are implemented using an in-memory table and persisted
to disk to ensure durability. The server is a singleton in our
implementation, and was sufficient to handle the load in
all our experiments. We also implemented a replicated LVI
server—the additions to the server amounted to an extra
~500 lines of code.

The functions themselves are written in Rust and com-
piled to WASM using the wasm32-unknown-unknown tar-
get, though any language that compiles to WebAssembly
would have worked. The static analyzer builds on Euno-
mia [31], adding and modifying ~2000 lines of code to the
existing ~8000 lines of Python. Our changes to Eunomia
consist mostly of augmenting the analyzer to recognize calls
to the storage system and returning the state of symbolic
variables at those points as well as the dependencies to each
call. We use WasmTime [12] as our web assembly runtime,
which executes embedded in the runtime.

The static analyzer is run against each function before
uploading them to the cloud, and the results of the analysis
are included with the function to allow the runtime to predict
the read and write sets. Radical’s static analyzer derives
™ automatically, but requires additional manual effort to
connect the resulting function to the rest of the code, which
enables the runtime to invoke and use the results of f™.

Radical imposes limitations on registered functions and
relies on WasmTime to ensure that functions run determin-
istically. First, all registered functions must ensure that they
follow the restrictions laid out in § 3 when interacting with
external services. Second, all registered functions must not
import any non-deterministic functions such as random num-
ber generation or retrieving the current time. To handle other
sources of non-determinism, Radical properly configures the
WasmTime runtime [2]. As long as developers take the first
two steps, all functions registered with Radical will execute
deterministically.

5 Evaluation

Our evaluation of Radical quantifies how it impacts end-to-
end latency for realistic applications (§ 5.1) in a real deploy-
ment setting (§ 5.2) and how sensitive Radical’s performance
is to function execution time.

We find that Radical improves average end-to-end latency
for all users (§ 5.3). We find that Radical provides the largest

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

improvement to users far from the primary copy of the data,
and incurs only marginal overhead when users are very close
to the primary copy (§ 5.4). For many realistic applications,
performance is consistent regardless of how far users are
from the datacenter. We also find this improvement is con-
sistent across most function execution times (§ 5.5).

Finally, we evaluate the infrastructure cost of running
Radical compared to running in the datacenter and find that
Radical is only moderately more expensive (§ 5.7).

5.1 Benchmark applications

We evaluate Radical by replicating the functionality of popu-
lar web applications as Radical applications. To find suitable
applications, we looked at the most popular open-source
Ruby on Rails web applications on GitHub. Ruby on Rails is
a popular framework for developing web applications that
run in the datacenter, most of which use external storage
services; these characteristics make them good candidates
for Radical.

We separated the applications into four categories, as
many of the most popular repositories have the same or sim-
ilar functionality. For example, both Diaspora and Mastodon
are social networks that allow users to follow other users,
make posts and comments, and like other users’ content. The
four categories are: social media, project/team management,
image boards, and forums. We selected the most popular
application from each category whose functionality we port
to Radical: Diaspora, Discourse, Danbooru, and Lobsters. Ad-
ditionally, we ported the Hotel reservation benchmark from
Deathstarbench [29].

To port these applications to Radical, we separated their
core functionality into serverless functions, implemented
in Rust. The Rust code was then compiled to WebAssem-
bly. In total, we implemented 27 serverless functions across
the five applications. We were able to reuse some functions
across multiple applications. The static analyzer successfully
handled all 27 functions, three of which required the opti-
mization for dependent reads presented in § 3.3.

For the remainder of the evaluation, we focus on three ap-
plications detailed in Table 1. We selected the social network,
forum, and hotel reservation benchmarks as they exhibit the
full range of Radical’s benefits. Radical provides the greatest
benefit for the hotel reservation system, median benefit for
the social network, and the least benefit for the forum.

5.2 Methodology

We evaluate Radical in a global scenario, across five appli-
cation deployment locations in AWS datacenters: Ashburn,
Virginia (VA); San Francisco, California (CA); Dublin, Ireland
(IE); Frankfurt, Germany (DE); and Tokyo, Japan (JP). Clients
are deployed in the same locations as the applications so that
they have low-latency access to them.

Running Cons

istent Applications Closer to Users with Radical for Lower Latency

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Execution
Function Description Writes Analyzable Time Workload%
Social Media Login Performs pbkdf2-based password check No Yes 213 ms 9.5%
Social Media Post Make a post and add to follower’s timelines ~ Yes Yes* 106 ms 0.5%
Social Media Follow Follow another user Yes Yes 16 ms 0.5%
Social Media Timeline View the posts from following users No Yes 120 ms 80%
Social Media Profile View a user’s profile and their posts No Yes 124 ms 9.5%
Hotel Search Finds all hotels near a user’s location No Yes™ 161 ms 60%
Hotel Recommend Get recommendations based on prior reviews No Yes 207 ms 30%
Hotel Book Book a room in a hotel Yes Yes 272 ms 0.5%
Hotel Review Make a review for a hotel Yes Yes 13 ms 0.5%
Hotel Login Performs pbkdf2-based password check No Yes 213 ms 0.5%
Hotel Attractions View all nearby attractions to a hotel No Yes 111 ms 8.5%
Forum Homepage View most recent/popular posts No Yes 209ms 80%
Forum Post Make a comment or post Yes Yes 18 ms 1%
Forum Interact Upvote or favorite comments/posts Yes Yes 16 ms 9%
Forum View View a post and all comments No Yes 123 ms 8%
Forum Login Performs pbkdf2-based password check No Yes 212ms 2%

Table 1. Benchmark application’s function descriptions, whether they include writes, if they are analyzable, median execution
time, and percent of the workload. Asterisks indicate analyzing the function required the dependent read optimization.

| VA|CA|IE|DE| JP
latwucns | 7| 7470 | 93 146
Table 2. The round-trip latency (ms) between each location
and the primary DynamoDB instance in Virigina.

Using AWS datacenters for each location limited exoge-
nous performance variation across locations, though func-
tion execution times vary slightly, likely due to scheduling
and networking differences. Our experience evaluating Rad-
ical showed that variance between different cloud providers
was much greater—for example, we found that Cloudflare
workers tended to execute the same applications much faster
than Amazon Lambda, which made it difficult to determine
how much Radical improved end-to-end latency. To isolate
the performance improvement that comes from Radical, we
use AWS for all locations.

All five locations use DynamoDB as their storage sys-
tem, with the copy in Virginia acting as the primary. Radical
enables using a more performant, potentially non-durable,
storage system, such as an in-memory cache, in non-primary
locations, which would lower execution times. We use Dy-
namoDB as the cache, however, to isolate the performance
differences due to Radical’s architecture and the LVI protocol
from differences in storage system performance.

The round-trip latencies between each near-user location
(CA, IE, DE, and JP) and the near-storage location (VA) are
specified in Table 2. We refer to this latency as lat,ycns,
which is identical to the round trip latency the LVI request,

as it also travels from the application location to the data-
center holding the primary copy of the data. The latency for
invoking a lambda function in the same datacenter is ~12 ms.
All reported latencies are medians measured across 10,000
requests.

The LVI server is deployed in Virginia alongside the pri-
mary DynamoDB instance, running on an EC2 t3.2xlarge
instance with 8 vCPUs and 32 GiB of memory.

We evaluate Radical using logical clients: a c6i.8xlarge EC2
instance instantiates 50 client processes that send requests
to the functions in Radical. All function scaling is handled
using AWS’s built-in scaler.

Each lambda function is allocated 2 GB of memory to en-
sure that it has 2 vCPUs, ensuring the LVI request and the
function’s execution are concurrent.

5.3 End-to-End Latency

Radical runs applications that need strong consistency near
the user with the goal of reducing end-to-end latency. To
evaluate whether it achieves this goal, we evaluate each of
the benchmark applications against a primary-datacenter
baseline. The baseline provides strong consistency by send-
ing all requests to the copy of the application running along-
side the primary copy of the data in Virginia. Additionally,
we compare Radical’s performance to that of running the
application in each location against its local copy of the data.
This represents the best possible performance Radical could
provide an application: it incurs no overheads as the storage
is inconsistent; latency reflects only the execution time of
each function. The closer Radical is to this value, the better.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

We do not evaluate the performance of the applications
using DynamoDB’s global tables with strong consistency.
This is because the feature is not available across all regions.
Additionally, our results in § 2 suggest the latency tradeoff
between locations with global tables will be worse than the
primary-datacenter baseline we compare against. Those re-
sults show that the cost of accessing the global table once is
higher than the cost of accessing the primary datacenter. If
the application were to make more accesses to storage, such
as those in our evaluation do, this penalty would only be
exacerbated; using global tables would never be better than
the primary-datacenter baseline.

Workloads. We evaluate each application using a realistic
workload with a high level of skew. At higher skew values,
the requests an application makes go to a smaller portion of
the key space; this stresses Radical’s ability to handle many
concurrent requests that touch the same keys and thereby
the performance of its locking scheme For the social me-
dia application, we use the same workload parameters as
Tapir [68] with a zipf parameter of 0.99 for selecting users.
For the hotel application, we use the mixed workload param-
eters from Deathstarbench [29], which accesses hotels and
users uniformly at random. For the forum application, we
used numbers based on the reported statistics from lobste.rs
with a zipf parameter of 0.99 when selecting posts. Workload
parameters are identical for Radical and the baseline.

Results. Figure 4 shows that Radical delivers on its goal:
it improves end-to-end latency for all applications by 28—
35%. Even with the high level of skew in these workloads,
the success rate of the validation step in the LVI protocol
remains around 95% for all the applications, ensuring that
Radical is faster than the primary-datacenter baseline.

Radical’s improvements come from its abilities to hide the
latency between the near-user and near storage locations. It
does introduce some overhead to the application, however,
as extracting the keys the application will access is on the
critical path, and in cases where the check fails, the process-
ing of the LVI request is added onto the function’s execution
in the near-storage location. To see how close Radical gets
to the ideal, we plot the maximum possible improvement on
the graphs with a red line using the results from the inconsis-
tent lower bound experiments. The results show that Radical
achieves 89% of the maximum possible improvement for the
hotel application, 88% for the social media application, and
84% for the forum—while providing strong consistency and
durability.

We do not present throughput results for Radical. This is
because it has the same throughput as the baseline: the only
bottleneck Radical introduces is the singleton LVI server.
The server can be replicated to make it highly available and
fault tolerant; we discuss the impact of doing so in § 5.6

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

Summary. Radical delivers on its promise of allowing ap-
plications that require strong consistency and durability to
move away from their data, taking advantage of proximity
to the user to reduce end-to-end latency.

Radical Il Baseline

400
300

200

Latency (ms)

100

Social Media Forum

Hotel Booking

Figure 4. End-to-end median (bar) and p99 (whisker) latency
for applications across both deployments. Red lines represent
the maximum possible improvement.

5.4 Regional Variation

To better understand how Radical impacts applications run-
ning in different regions, we evaluate the end-to-end latency
of each application across the five deployment locations.
The benefit Radical provides comes from hiding the latency
between the location and the primary copy of the data in
Virginia, which is the lat, ;. We expect that that Radical
benefits locations with a higher lat,,c,,s more than those
with a lower lat,,c ns.

Results. The results are shown in Figure 5. Table 2 shows
the laty,e,ns for each location. As expected, the magnitude of
the latency improvement Radical provides is correlated with
the latp e ns, with locations with a higher lat, s seeing
a larger improvement. That Radical performs worse than
the baseline in Virginia is also expected: Radical and the
baseline run the same function and access the same storage
in the Virginia datacenter, but Radical incurs the additional
overheads described above.

The dashed red lines on the graph show the results of
running the applications in the same regions with the in-
consistent lower bound. The results show that Radical gets
close to this value in all locations. Excitingly, these results
also show that Radical allows applications to leverage the
benefits that come from running in any location, regardless
of the distance to the primary copy of the data.

The one situation where this is not the case is for the
social media application in Japan. This is because the lat,,c;ns
is so high that it exceeds the execution time of 4 of the
functions in the application. In these situations, Radical has
to wait for the LVI protocol to complete before releasing the

Running Consistent Applications Closer to Users with Radical for Lower Latency

Radical

Latency (ms)

VA CA IE DE JpP
Hotel Booking

VA CA
Social Media

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

I Baseline

IE DE JpP VA CA IE DE JpP
Forum

Figure 5. End-to-end median (bar) and p99 (whisker) latency for each application across the five deployment locations. Red

lines represent the maximum possible improvement.

speculative result to the client, which adds some overhead
to the function’s execution time. However, this overhead is
small in comparison to lat,y,c,ns, Which the baseline has to
pay for each invocation. This explains why Radical does not
get as close to the ideal but still outperforms the baseline.

Summary. The results above show that Radical is able to
provide the largest latency improvements in locations with
the highest lat,,,,s and that Radical is able to get close to
the best possible performance in all locations, regardless of
distance to the primary copy of the data.

5.5 Function Latency

To better understand how Radical improves end-to-end la-
tency, we analyze the performance of each function in the
three benchmark applications. As each function has a differ-
ent execution time and different read/write characteristics,
this analysis helps reveal which functions most benefit from
using Radical and which do not. The total latency of a request
to a single function can be broken down into the following
components:

1. The time it takes to instantiate the lambda function.

2. The time it takes to load the web assembly blob into mem-
ory from disk.

3. The execution time of the extracted f™ function

4. The maximum of the following:

e The execution time of the WebAssembly function

e The time it takes to send, process and receive a response

to the LVI request.

5. In the case of a validation failure, the time it takes to
execute the function in primary datacenter and send the
response back to the application location.

We expect that functions with a WASM execution time
higher than lat,,c,,s benefit the most from Radical. This is
because latp,c,ns governs the latency of the LVI protocol;
when this is lower than the WASM execution time of the
function, it will be the maximum component in (4) above.

Results. The results are shown in Figure 6. Table 1 shows
which functions have a higher WASM execution time than
latyyesns. As expected, these functions receive the greatest
benefit from using Radical. For functions with particularly
low execution times, such as forum-interact, forum-post,
and hotel-review, the benefits of Radical are small; they have
approximately the same total latency as running them near
storage.

Even for these low execution time functions, all are within
a few ms of running directly in the near-storage location.
This means Radical, at worst, has a similar latency to running
near storage. This is a useful characteristic of the system,
as it means developers can safely use Radical for its latency
benefits for most function without worrying about nega-
tively impacting other functions. These results show that
even functions with execution times as low as 13 ms can
benefit from using Radical.

Summary. The results above show that Radical is most
beneficial for functions with execution times greater than
latyyesns, and at worse is similar to running near storage.

5.6 Impact of Server Replication

The server used in this evaluation was a singleton, mak-
ing the system vulnerable to failures because LVI requests
cannot be handled until the server is brought back online.
Replicating the server to make it highly available addresses
this problem, but adds extra latency to the system: here, we
discuss that impact. There are two pieces of persistent state
the server must keep track of: locks, and write intents. Write
intents are already stored in DynamoDB, so no extra work
needs to be done here. Locks are persisted to an EBS volume,
but are not highly available—we address this by storing the
locks in a three node etcd [4] cluster spread across three
availability zones. Additionally, we include an idempotency
key for each function execution to ensure that they will
be run at most twice for each user request: once near-user,

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Radical

400

Latency (ms)

100

hot., ho, ho 4 4 h SOp:
e/, Olel., . Olel g “Ole]., *Ole].; “Ole] g “OCiy]
I‘GVIE.W al, [ractjgsitc 4 ¢ ecou] ”]1:1.5;111 bOo k s

S0, cj.
01101;] Y

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

Il Baseline

S0Ciy., 20l Socwdfofu Lory,, Tory fofum\ for,

U, LUm. s Un,.,
Ost 1’”6‘11'115 “0fije 08l "lerg, Post View, logi bomepa e

Figure 6. End-to-end median (bar) and p99 (whisker) latency for each function used in the evaluation.

and at most once near storage. These idempotency keys are
stored in DynamoDB along with the write intents.

Using etcd for locks adds latency to Radical because lock
acquisitions now travel through Raft [48], which requires
communication between nodes in the cluster. This increases
the latency of processing a LVI request at the server, which
has a direct impact on latency in two ways. First, when
validation fails, the end-to-end latency for the request is
increased by the time it takes to acquire locks. Second, the
previously mentioned minimum runtime to see a benefit
from Radical increases, as it is directly related to the latency
of the LVI request. Our implementation of the replicated
server acquires all locks in series. This increases the latency
added by the replicated server, but can be optimized in the
future with batching.

Our implementation of the replicated server takes 2.3 ms
to acquire a single lock, and 3 ms to write and update the
idempotency key for each function invocation in DynamoDB.
The total increase in latency when processing an LVI request
is 3+2.3xL where L is the number of locks a function acquires.
This in turn means that when validation fails, the Radical’s
incurs 3 + 2.3 * L ms of additional latency over the system as
evaluated above. Similarly, the minimum execution time for
a function to benefit from Radical increases to 16 + 2.3 * L ms.
Given the possibility of batching, we believe that 20 ms is a
reasonable approximation for this constant.

5.7 Cost Analysis

Radical increases the cost of running an application by run-
ning functions twice when the LVI request fails, for the extra
bandwidth used by the LVI protocol, the LVI server, and
the storage needed in near-user locations. To quantify this
increase we calculate the cost of running a generic appli-
cation that makes at most 50000 reads per second and 500
writes per second using the costs of AWS services. This ratio
matches those of the applications above. The cost of one
such DynamoDB instance is $1077.36/month.

In the deployment above, we use DynamoDB as the stor-
age system to isolate the latency improvement between Rad-
ical and the baseline due to the LVI protocol. However, we
also implemented Radical using ScyllaDB [10] running in
an EC2 instance in the same datacenter as the functions.
We used mé6g.large instances ($34*5=$170/month) for Scyl-
laDB, which can handle more throughput than what we
provisioned for DynamoDB. Using ScyllaDB would further
improve the performance of Radical, as the latency to access
to ScyllaDB is lower than that to access DynamoDB. Radical
still uses DynamoDB in the near storage location.

The LVI server costs $166 per month, so the total cost
of Radical in the above deployment becomes $1077.36 +
$170 + $166 = $1413.36/month, or a 31% increase over the
baseline, which just needs to pay for the DynamoDB instance.
This number represents the added cost of the infrastructure
needed to run Radical.

In addition to infrastructure costs, Radical runs a second
lambda function when validation fails. This cost is propor-
tional to the validation failure rate in the LVI protocol, which
in the applications we evaluated is 5%.

As the number of functions invoked increases, function
executions eventually dominates the total deployment cost.
Consider a sample application whose functions have an av-
erage runtime of 100 ms, and a validation success rate of
5%. If the application invokes 1,000,000 functions near-user
each month, it incurs an additional 50,000 requests near
storage due to validation failures—this costs $0.14/month.
The baseline’s total cost in this situation is the cost of Dy-
namoDB and the cost of the million invocations: $1077.36 +
$2.87 = $1080.23/month as compared to Radical, which costs
$1413.36 + $2.87 + $0.14 = $1416.37/month. For 10,000,000
monthly invocations, the baseline costs 1106.06 and Radi-
cal costs 1443.50. For 100,000,000 monthly invocations, the
baseline costs 1364.36, and Radical costs 1714.71.

Radical incurs one additional potential source of overhead.
It provisions functions with 2 GB of memory in order to

Running Consistent Applications Closer to Users with Radical for Lower Latency

obtain the vCPUs it needs to parallelize the speculative exe-
cution of the function with the LVI request. Not all functions
need this much memory: some can be provisioned with less
memory without degrading in performance to further reduce
cost.

6 Related Work

We review relevant work in three categories: stateful server-
less computing, geo-replicated storage systems, and specula-
tive execution. Radical is inspired by and builds on work in
each of these categories, but is mostly complementary to it
as Radical addresses the new problem of enabling strongly
consistent speculation execution with a single request sent
prior to execution.

Stateful serverless. Various systems have sought to im-
prove the storage solutions available to serverless functions.
Recent examples include Beldi [67], Boki [35], Halfmoon [53],
and libDSE [42], which build on one another to provide
serverless functions with low-latency, transactional storage
systems. Unlike Radical, which uses stateful serverless func-
tions to run applications more efficiently, these systems make
stateful serverless workloads in the datacenter faster: as such,
they do not address the high access latency that exists be-
tween near-user locations and the near-storage location. We
believe Radical could be complemented by these systems; it
could use them in place of DynamoDB as a better solution
to storage.

Systems like Pocket [39] and Netherite [19] improve the
performance of workflows where multiple serverless func-
tions are coordinated together in sequence. These systems
focus on running near storage, and their designs would per-
form poorly if they were to run at near-user locations. Radical
does not try to optimize for serverless workflows, and ap-
plying it naively to such applications would likely perform
poorly. However, we believe that the techniques used by
prior work are portable to Radical as well, but leave that as
future work.

Other work focuses on porting microservice-style appli-
cations to serverless function. exCamera [28] highlights the
power of serverless functions, using them to run a compute-
intensive application with high efficiency. gg [27] builds on
these ideas; it provides a framework that generalizes some
of the techniques used by exCamera. Finally, Mu2sls [36]
proves that microservices can be automatically translated
into serverless functions. All of these techniques are com-
plementary to Radical; Radical requires applications to be
implemented as serverless functions, and the above systems
make it possible and simpler to perform those conversions.

Geo-replicated storage. Radical enables stateful applica-
tions to run across the globe, all accessing the same storage.
This follows in the footsteps of work dedicated to provid-
ing geo-replicated storage systems. Systems like Anna [66],
TAO [17], and COPS [44] replicate storage across datacenters,

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

but only provide eventual or causal consistency between
replicas. They can provide low-latency access to data, as
they avoid or minimize communication between replicas,
but it also means they do not provide the level of consistency
needed by the applications Radical targets.

State machine replication protocols such as Rabia [49],
WPaxos [14], and EPaxos [45, 62] do provide strong con-
sistency across wide areas. Similarly, distributed databases
like Spanner [22] and CockroachDB [57] provide wide area
strong consistency. These systems require communication
between replicas that introduces extra latency on each re-
quest to the storage system as discussed in § 2. In contrast,
Radical augments an existing storage system to enable spec-
ulative execution with strong consistency using a single
request whose latency overlaps with the speculative execu-
tion.

Other transactional, distributed storage systems like Hy-
der [16], Calvin [61], and Mako [55] provide wide-area strong
consistency and use various techniques to manage the la-
tency penalty that comes from doing so. However, each of the
systems still introduces latency that Radical avoids. While
Hyder runs a transaction against a local copy of the database,
it replicates the results of that transaction across the network
and cannot commit until that is completed. Calvin, which re-
quires that users submit the read/write set for a transaction—
unlike Radical, which can derive these sets automatically—
uses reconnaissance transactions to handle dependent ac-
cesses that require cross-network communication. Mako,
which speculatively executes transactions separately from
replicating them, delays responses to users until it can be
sure the transaction will be replicated.

Radical operates at a higher level of the stack than the
above systems, which enables it to deliver lower latency.
Rather than replacing the storage system an application uses,
Radical modifies the way the application is run, while reusing
the existing storage system and augmenting it with near-
user caches. Running the application provides insights about
it that Radical would not have access to were it lower on
the stack: it can see every request to storage the application
will make, and analyze the application ahead of time. Both
of these are critical: they form the backbone for Radical’s
static analysis, and enable it to interpose on the requests to
storage as part of the LVI request. Additionally, because it
controls the execution of the application, Radical can run
it speculatively, in its entirely, against a cache. The combi-
nation of speculative execution and the single LVI request
allow Radical to deliver lower latencies than the above stor-
age systems, which cannot leverage the same insights about
the applications they support.

Speculative execution. There is a long line of work on
speculative execution such as Zyzzyva [40], PBFT-CS [65],
Speculative Paxos [52], and Rethink the Sync [21, 47]. This
prior work uses speculative execution to hide the latency

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

of communication rounds in Byzantine fault tolerance (first
two), consensus, and syncing to a local or remote disk, re-
spectively.

Correctables extend promises to be able to return multiple,
successively more consistent values providing incremental
consistency guarantees [30]. For instance, a correctable could
initially return an eventually consistent result and then later
return a Linearizable result. This allows an application to
speculatively execute using the eventually consistent result
and only need to redo computation and pay the latency cost
when the Linearizable result is different.

Kemme et al. [37] expose an initial optimistic result of
atomic broadcast to a database that can be corrected later
when the final result is delivered only in the cases when it
differs. Planet [50] similarly exposes the progress of trans-
action commit to applications with the addition of the es-
timated likelihood of commit. This allows applications to
speculatively use results (informed by the likelihood) and
then correct them later if they change.

Radical’s use of speculative execution is inspired by this
previous work. Radical differs from it, however, in that to the
best of our knowledge it is the first system to enable strongly
consistent speculative execution with a single request sent
prior to execution. Achieving this required Radical to intro-
duce three new techniques. First, Radical’s static analysis
tool allows the protocol to determine relevant items ahead of
time, and check only those items. The above systems all re-
quire that the application or transaction first execute before
being able to perform operations like Radical’s validation
step. Second, with the geo-distributed setting of Radical, the
communication hidden by speculative execution must be
minimal—Radical addresses this by sending only the (single)
LVIrequest. Third, the write intent mechanism ensures that
updates made to local caches are guaranteed to reach stor-
age, even in the case of failure, providing consistency and
durability with that single LVI request.

7 Limitations

Not every application receives a reduction in end-to-end
latency when using Radical.

Radical must know the read/write set of the application
prior to running it. Its static analyzer handles this for all
the applications in our evaluation, but there are limits to
this technique. First, the application must decompose into
independent, serverless functions for the analysis to work.
Prior work shows that, in general, microservices can be de-
composed into serverless functions [36].

Second, some functions do not have read/write sets that
can be efficiently derived prior to their execution. As noted
in § 3.3, if a function uses the result of an expensive computa-
tion to read from storage, then running /™ incurs a latency
penalty. This is because the execution of f™ is not run in
parallel with anything else: its latency is added directly to
that of the function itself. Additionally, while Radical allows

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

developers to also provide the read/write set or an f™ man-
ually, there will always be cases where it is indeterminable.
In these situations, Radical resorts to running the function
in the near-storage location.

An application must also compile to a deterministic sub-
set of WebAssembly, i.e. it cannot rely on non-determinism
other than the data store operations. This is necessary for de-
terministic re-execution (§ 3.4). Not every application fulfills
this requirement, and others require significant refactoring
if they rely on sources of non-determinism like timers or
native extensions.

8 Conclusion

Radical is a framework that provides both low latency and
strong consistency to applications running close to users. To
do so, it runs the application speculatively against an eventu-
ally consistent cache, while sending a single request as part
of the LVI protocol to coordinate between the cache and a
primary copy of the data. The LVI protocol uses the results
of static analysis to acquire locks and perform a validation
check to ensure that all results exposed to users are Lineariz-
able. To ensure updates made to caches reach the primary
storage, Radical sets up write intents, and uses deterministic
re-execution to reconstruct the updates if the near-user loca-
tion fails to followup on the intent. Radical hides the latency
of the LVI request by overlapping it with the speculative
execution of the application. It does so successfully: our eval-
uation shows that Radical delivers 84-89% of the possible
latency improvement that comes from running applications
closer to users.

Acknowledgments

We thank the anonymous reviewers and our anonymous
shepherd. Thanks to Anja Kalaba, Leon Schuermann, Christo-
pher Branner-Augmon, Natalie Popescu, Constantine Doumani-
dis, Jianan Lu, Shai Caspin, Amelia Dobis, Mohanna Shahrad,
Theano Stavrinos, Daniel Berger, Mae Milano, and Robert
Morris for their support, feedback, and mentorship through-
out the research process. Thanks also to Brian Chen, Jonathan
Mindel, and Donna Wang for the wonderful work they did
working with Radical. This work was supported by the Na-
tional Science Foundation under grant CNS 2321723. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion

References

[1] Cloudflare Workers. https://workers.cloudflare.com/. Accessed: 2024-
12-09.

[2] Deterministic wasm execution. https://docs.wasmtime.dev/examples-
deterministic-wasm-execution.html. Accessed: 2025-07-30.

[3] EC2. https://aws.amazon.com/ec2/. Accessed: 2024-04-19.

[4] etcd. https://etcd.io/. Accessed: 2025-08-27.

https://workers.cloudflare.com/
https://docs.wasmtime.dev/examples-deterministic-wasm-execution.html
https://docs.wasmtime.dev/examples-deterministic-wasm-execution.html
https://aws.amazon.com/ec2/
https://etcd.io/

Running Consistent Applications Closer to Users with Radical for Lower Latency

5]

— —
[RN |
=

—
—
w

[

[18

[t

[19

[

[20

[t

[21

—

[22

—

(23]

Explore the latest news for Azure datacenter regions. https://azure.
microsoft.com/en-us/explore/global-infrastructure/geographies#
new-regions. Accessed: 2024-12-09.

Idempotent requests. https://docs.stripe.com/api/idempotent _
requests. Accessed: 2025-07-30.

Lambda. https://aws.amazon.com/lambda/. Accessed: 2024-04-19.
Multi-region strong consistency. https://docs.aws.amazon.com/
amazondynamodb / latest / developerguide / multi - region - strong -
consistency-gt.html. Accessed: 2024-04-01.

Regions and Zones. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/using-regions-availability-zones.html. Accessed: 2024-12-
09.

ScyllaDB. https://www.scylladb.com/. Accessed: 2024-12-10.

Stripe. https://stripe.com/. Accessed: 2025-07-30.

Wasmtime. https://wasmtime.dev/. Accessed: 2024-12-10.

Welcome to EdgeWorkers. https://techdocs.akamai.com/edgeworkers/
docs/welcome-to-edgeworkers. Accessed: 2024-04-19.

Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik
Kosar. Wpaxos: Wide area network flexible consensus. IEEE Trans.
Parallel Distrib. Syst., 31(1):211-223, January 2020.

Hagit Attiya and Jennifer L. Welch. Sequential consistency versus
linearizability. ACM Trans. Comput. Syst., 12(2):91-122, May 1994.
Phil Bernstein, Colin Reid, and Sudipto Das. Hyder - a transactional
record manager for shared flash. In CIDR, pages 9-20, January 2011.
Best Paper Award.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC’13, page 49-60, USA, 2013.
USENIX Association.

Jake Brutlag. Speed matters. https://research.google/blog/speed-
matters/, 2009. Accessed: 2024-12-09.

Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, Connor McMahon, Christopher S. Meikle-
john, and Xiangfeng Zhu. Netherite: Efficient execution of serverless
workflows. Proc. VLDB Endow., 15(8):1591-1604, apr 2022.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2), jun 2008.

Peter M. Chen, Jason Flinn, and Edmund B Nightingale. Speculative
execution in a distributed file system. In Proceedings of the 20th Sym-
posium on Operating Systems Principles (SOSP °05) Award paper., pages
191-205, October 2005. Selected as an award paper.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI'12, page 251-264, USA, 2012. USENIX
Association.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. Spanner: Google’s globally distributed database. ACM
Trans. Comput. Syst., 31(3), August 2013.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL 77, page
238-252, New York, NY, USA, 1977. Association for Computing Ma-
chinery.

Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek,
Richard Krog, Colin Lazier, Erben Mo, Akhilesh Mritunjai, Soma-
sundaram Perianayagam, Tim Rath, Swami Sivasubramanian, James
Christopher Sorenson III, Sroaj Sosothikul, Doug Terry, and Akshat
Vig. Amazon DynamoDB: A scalable, predictably performant, and
fully managed NoSQL database service. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 1037-1048, Carlsbad, CA,
July 2022. USENIX Association.

Lidice Fernandez, Juan Seminara, and Michael Shirer. Shared cloud
infrastructure spending continues to accelerate, fueled by ai-related
spending in the first quarter of 2024, according to idc. https://www.
idc.com/getdoc.jsp?containerld=prUS52398324, 2024. Accessed: 2024-
12-09.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From lap-
top to lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 475-488, Renton, WA, July 2019. USENIX
Association.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. Encoding, fast and slow:
low-latency video processing using thousands of tiny threads. In
Proceedings of the 14th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI'17, page 363-376, USA, 2017. USENIX
Association.

Yu Gan, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’19, page 3-18, New York, NY, USA, 2019. Association for Computing
Machinery.

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.
Incremental consistency guarantees for replicated objects. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 169-184, 2016.

Ningyu He, Zhehao Zhao, Jikai Wang, Yubin Hu, Shengjian Guo,
Haoyu Wang, Guangtai Liang, Ding Li, Xiangqun Chen, and Yao Guo.
Eunomia: Enabling user-specified fine-grained search in symbolically
executing webassembly binaries. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, page 385-397, New York, NY, USA, 2023. Association for
Computing Machinery.

David Heinemeier Hansson. Our cloud-exit savings will now top ten
million over five years. https://world.hey.com/dhh/our-cloud-exit-
savings-will-now-top-ten-\million-over-five-years-c7d9b5bd, 2024.
Accessed: 2024-12-09.

Maurice P Herlihy and Jeannette M Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 12(3):463-492, 1990.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer
variables. In Proceedings of the ACM SIGPLAN 1989 Conference on Pro-
gramming Language Design and Implementation, PLDI ’89, page 28-40,

https://azure.microsoft.com/en-us/explore/global-infrastructure/geographies#new-regions
https://azure.microsoft.com/en-us/explore/global-infrastructure/geographies#new-regions
https://azure.microsoft.com/en-us/explore/global-infrastructure/geographies#new-regions
https://docs.stripe.com/api/idempotent_requests
https://docs.stripe.com/api/idempotent_requests
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/multi-region-strong-consistency-gt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/multi-region-strong-consistency-gt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/multi-region-strong-consistency-gt.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://www.scylladb.com/
https://stripe.com/
https://wasmtime.dev/
https://techdocs.akamai.com/edgeworkers/docs/welcome-to-edgeworkers
https://techdocs.akamai.com/edgeworkers/docs/welcome-to-edgeworkers
https://research.google/blog/speed-matters/
https://research.google/blog/speed-matters/
https://www.idc.com/getdoc.jsp?containerId=prUS52398324
https://www.idc.com/getdoc.jsp?containerId=prUS52398324
https://world.hey.com/dhh/our-cloud-exit-savings-will-now-top-ten-\million-over-five-years-c7d9b5bd
https://world.hey.com/dhh/our-cloud-exit-savings-will-now-top-ten-\million-over-five-years-c7d9b5bd

=

—

= =

—

—

—

[t

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

New York, NY, USA, 1989. Association for Computing Machinery.
Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP °21, page 691-707, New York,
NY, USA, 2021. Association for Computing Machinery.

Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel,
and Vincent Liu. Executing microservice applications on serverless,
correctly. Proc. ACM Program. Lang., 7(POPL), jan 2023.

Bettina Kemme, Fernando Pedone, Gustavo Alonso, and André Schiper.
Processing transactions over optimistic atomic broadcast protocols. In
Proceedings. 19th IEEE International Conference on Distributed Comput-
ing Systems (Cat. No. 99CB37003), pages 424-431. IEEE, 1999.

Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Proceedings
of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’03, page 553-568, Berlin,
Heidelberg, 2003. Springer-Verlag.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In 13th USENLX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 427-444, Carlsbad, CA,
October 2018. USENIX Association.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative byzantine fault tolerance. ACM
Trans. Comput. Syst., 27(4), jan 2010.

Raffi Krikorian. Timelines at Scale. https://www.infoq.com/
presentations/Twitter-Timeline-Scalability/. video link. consistency
discussion at 26min.

Tianyu Li, Badrish Chandramouli, Philip A. Bernstein, and Samuel
Madden. Distributed speculative execution for resilient cloud applica-
tions, 2024.

Richard J Lipton and Jonathan S Sandberg. PRAM: A scalable shared
memory. Princeton University, Department of Computer Science, 1988.
Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G
Andersen. Don’t settle for eventual: scalable causal consistency for
wide-area storage with cops. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 401-416, 2011.
ITulian Moraru, David G. Andersen, and Michael Kaminsky. There
is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, page 358-372, New York, NY, USA, 2013. Association for Comput-
ing Machinery.

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. Ciel: a universal execu-
tion engine for distributed data-flow computing. In Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI'11, page 113-126, USA, 2011. USENIX Association.
Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and
Jason Flinn. Rethink the sync. ACM Trans. Comput. Syst., 26(3), sep
2008.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’14, page 305-320,
USA, 2014. USENIX Association.

Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang, Yicheng Shen,
Xiong Zheng, Joseph Tassarotti, Lewis Tseng, and Roberto Palmieri.
Rabia: Simplifying state-machine replication through randomization.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP 21, page 472-487, New York, NY, USA, 2021.
Association for Computing Machinery.

Gene Pang, Tim Kraska, Michael J Franklin, and Alan Fekete. Planet:
making progress with commit processing in unpredictable environ-
ments. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 3-14, 2014.

Nicolaas Kaashoek, Oleg A. Golev, Austin T. Li, Amit Levy, and Wyatt Lloyd

[51] Ben Popper. Are clouds having their on-prem moment? https://

stackoverflow.blog/2023/02/20/are-companies-shifting-away-from\-
public-clouds/, 2023. Accessed: 2024-12-09.

Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and Arvind
Krishnamurthy. Designing distributed systems using approximate
synchrony in data center networks. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), pages 43-57,
2015.

Sheng Qi, Xuanzhe Liu, and Xin Jin. Halfmoon: Log-optimal fault-
tolerant stateful serverless computing. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 314-330,
New York, NY, USA, 2023. Association for Computing Machinery.
Michiel Ronsse and Koen De Bosschere. Recplay: a fully inte-
grated practical record/replay system. ACM Trans. Comput. Syst.,
17(2):133-152, may 1999.

Weihai Shen, Yang Cui, Siddhartha Sen, Sebastian Angel, and Shuai
Mu. Mako: Speculative distributed transactions with geo-replication.
Dharma Shukla. A technical overview of Azure Cosmos DB. https:
//azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-
cosmos-db/. Accessed: 2024-04-19.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,
Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram Gruneir,
Justin Jaffray, Lucy Zhang, and Peter Mattis. Cockroachdb: The re-
silient geo-distributed sql database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’20, page 1493-1509, New York, NY, USA, 2020. Association for Com-
puting Machinery.

Boris Tane. Moving baselime from aws to cloudflare: simpler architec-
ture, improved performance, over 80 https://blog.cloudflare.com/80-
percent-lower-cloud- cost- how-baselime-\moved- from-aws-to-
cloudflare/, 2024. Accessed: 2024-12-09.

Chungiang Tang. Meta’s hyperscale infrastructure: Overview and
insights. Commun. ACM, 68(2):52-63, January 2025.

Edward Targett. Warren buffett’s geico repatriates work from the
cloud, continues ambitious infrastructure overhaul. https://www.
thestack.technology/warren-buffetts-geico-repatriates-work\-from-
the-cloud-continues-ambitious\-infrastructure-overhaul/, 2024. Ac-
cessed: 2024-12-09.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’12, page 1-12, New York, NY, USA, 2012. Association for Computing
Machinery.

Sarah Tollman, Seo Jin Park, and John Ousterhout. EPaxos revis-
ited. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 613-632. USENIX Association, April
2021.

Peter Vanhee. A technical deep dive into processing €5 million in do-
nations in 2 hours using cloudflare workers. https://medium.com/we-
are-serverless/a-technical-deep-dive-into-processing\-5-million-in-
donations-in-2-hours-using\-cloudflare-workers-fd857ea5cd37, 2020.
Accessed: 2024-12-09.

Bob Violino. Computing and storage are moving to the edge, and it
needs to be ready. https://www.cnbc.com/2024/06/11/computing-and-
storage-are-moving-to-the\-edge-and-it-needs-to-be-ready.html,
2024. Accessed: 2024-12-09.

Benjamin Wester, James Cowling, Edmund B. Nightingale, Peter M.
Chen, Jason Flinn, and Barbara Liskov. Tolerating latency in replicated
state machines through client speculation. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI'09, page 245-260, USA, 2009. USENIX Association.

https://www.infoq.com/presentations/Twitter-Timeline-Scalability/
https://www.infoq.com/presentations/Twitter-Timeline-Scalability/
https://stackoverflow.blog/2023/02/20/are-companies-shifting-away-from\-public-clouds/
https://stackoverflow.blog/2023/02/20/are-companies-shifting-away-from\-public-clouds/
https://stackoverflow.blog/2023/02/20/are-companies-shifting-away-from\-public-clouds/
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://blog.cloudflare.com/80-percent-lower-cloud-cost-how-baselime-\moved-from-aws-to-cloudflare/
https://blog.cloudflare.com/80-percent-lower-cloud-cost-how-baselime-\moved-from-aws-to-cloudflare/
https://blog.cloudflare.com/80-percent-lower-cloud-cost-how-baselime-\moved-from-aws-to-cloudflare/
https://www.thestack.technology/warren-buffetts-geico-repatriates-work\-from-the-cloud-continues-ambitious\-infrastructure-overhaul/
https://www.thestack.technology/warren-buffetts-geico-repatriates-work\-from-the-cloud-continues-ambitious\-infrastructure-overhaul/
https://www.thestack.technology/warren-buffetts-geico-repatriates-work\-from-the-cloud-continues-ambitious\-infrastructure-overhaul/
https://medium.com/we-are-serverless/a-technical-deep-dive-into-processing\-5-million-in-donations-in-2-hours-using\-cloudflare-workers-fd857ea5cd37
https://medium.com/we-are-serverless/a-technical-deep-dive-into-processing\-5-million-in-donations-in-2-hours-using\-cloudflare-workers-fd857ea5cd37
https://medium.com/we-are-serverless/a-technical-deep-dive-into-processing\-5-million-in-donations-in-2-hours-using\-cloudflare-workers-fd857ea5cd37
https://www.cnbc.com/2024/06/11/computing-and-storage-are-moving-to-the\-edge-and-it-needs-to-be-ready.html
https://www.cnbc.com/2024/06/11/computing-and-storage-are-moving-to-the\-edge-and-it-needs-to-be-ready.html

Running Consistent Applications Closer to Users with Radical for Lower Latency SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

[66] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Association.
Anna: A kvs for any scale. IEEE Trans. on Knowl. and Data Eng., [68] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-
33(2):344-358, February 2021. murthy, and Dan R. K. Ports. Building consistent transactions with
[67] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, inconsistent replication. In Proceedings of the 25th Symposium on Oper-
and Vincent Liu. Fault-tolerant and transactional stateful serverless ating Systems Principles, SOSP ’15, page 263-278, New York, NY, USA,
workflows. In Proceedings of the 14th USENLX Conference on Operating 2015. Association for Computing Machinery.

Systems Design and Implementation, OSDI'20, USA, 2020. USENIX

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 Architecture
	3.2 LVI Protocol
	3.3 Static Analysis
	3.4 Deterministic Re-execution
	3.5 Interacting with external services.
	3.6 Validation, Locking, and Write Intents for Linearizability

	4 Implementation
	5 Evaluation
	5.1 Benchmark applications
	5.2 Methodology
	5.3 End-to-End Latency
	5.4 Regional Variation
	5.5 Function Latency
	5.6 Impact of Server Replication
	5.7 Cost Analysis

	6 Related Work
	7 Limitations
	8 Conclusion
	Acknowledgments
	References

