
Eliminating Cache-Based Timing Attacks with
Instruction-Based Scheduling

Deian Stefan1, Pablo Buiras2, Edward Yang1, Amit Levy1, David Terei1, Alejandro
Russo2, and David Mazières

1 Stanford University
2 Chalmers University of Technology

Abstract. Information flow control allows untrusted code to access sensitive and
trustworthy information without leaking this information. However, the presence
of covert channels subverts this security mechanism, allowing processes to com-
municate information in violation of IFC policies. In this paper, we show that
concurrent deterministic IFC systems that use time-based scheduling are vulner-
able to a cache-based internal timing channel. We demonstrate this vulnerability
with a concrete attack on Hails, one particular IFC web framework. To eliminate
this internal timing channel, we implement instruction-based scheduling, a new
kind of scheduler that is indifferent to timing perturbations from underlying hard-
ware components, such as the cache, TLB, and CPU buses. We show this sched-
uler is secure against cache-based internal timing attacks for applications using a
single CPU. To show the feasibility of instruction-based scheduling, we have im-
plemented a version of Hails that uses the CPU retired-instruction counters avail-
able on commodity Intel and AMD hardware. We show that instruction-based
scheduling does not impose significant performance penalties. Additionally, we
formally prove that our modifications to Hails’ underlying IFC system preserve
non-interference in the presence of caches.

1 Introduction

The rise of extensible web applications, like the Facebook Platform, has proven a ripe
application for information flow control (IFC) [41, 53]. Popular platforms like Face-
book give approved apps full access to users’ sensitive data, including the ability to
violate security policies set by users. In contrast, IFC allows websites to run untrusted,
third-party apps that operate on sensitive user data [12, 16, 34], ensuring they abide by
security policies in a mandatory fashion.

Recently, Hails [16], a web-platform framework built atop the LIO IFC system [59,
60], has been used to implement websites that integrate third-party untrusted apps. For
example, the code-hosting website GitStar.com built with Hails uses untrusted apps
to deliver core features, including a code viewer and wiki. GitStar relies on LIO’s IFC
mechanism to enforce robust privacy policies on user data and code.

LIO, like other IFC systems, ensures that untrusted code does not write data that
may have been influenced by sensitive sources to public sinks. For example, an un-
trusted address-book app is allowed to compute over Alice’s friends list and display a
stylized version of the list to Alice, but it cannot leak any information about her friends

to arbitrary end-points. The flexibility of IFC makes it particularly suitable for the web,
where access control lists often prove either too permissive or too restrictive.

However, a key limitation of IFC is the presence of covert channels, i.e., “channels”
not intended for communication that nevertheless allow code to subvert security policies
and share information [35, 40]. A great deal of research has identified and analyzed
covert channels [17, 38, 39, 58, 65]. In this work, we focus on the internal timing covert
channel, which occurs when sensitive data is used to manipulate the timing behavior of
threads so that other threads can observe the order in which shared public resources are
used [58, 65]. Other timing channels, such as those derived from measuring external
events [3, 6, 20] or having access to a wall clock are also important but beyond our
present scope.

LIO eliminates the internal timing covert channel by restricting how programmers
write code [60]. Programmers are required to explicitly decouple computations that
manipulate sensitive data from those that can write to public resources, eliminating
covert channels by construction. However, decoupling only works when all shared re-
sources are modelled. LIO only considers shared resources that are expressible by the
programming language, e.g., shared-variables, file descriptors, semaphores, channels,
etc. Implicit operating system and hardware state can still be exploited to alter the tim-
ing behavior of threads, and thus leak information. Reexamining LIO, we found that the
underlying CPU cache can be used to introduce an internal timing covert channel that
leaks sensitive data at 0.75 bits/s. While this attack is low bandwidth, it is extremely
simple to carry out. For example, we were able to leak all the collaborators on a private
GitStar project in less than a minute using this attack.

Several countermeasures to cache-based attacks have previously been considered,
primarily in the context of cryptosystems following the work of Kocher [30] (see Sec-
tion 8). Unfortunately, many of the techniques are not designed for IFC scenarios. For
example, modifying an algorithm implementation, as in the case of AES [9, 19], does
not naturally generalize to arbitrary untrusted code. Similarly, flushing or disabling the
cache when switching protection domains, as suggested in [8, 70], is prohibitively ex-
pensive in systems like Hails, where context switches occur hundreds of times per sec-
ond. Finally, relying on specialized hardware, such as partitioned caches [31, 44, 66],
which isolate the effects of one partition from code using a different partition, restricts
the deployability and scalability of the solution; partitioned caches are not readily avail-
able and often cannot be partitioned to an arbitrary security lattice.

In his paper, we describe a countermeasure to cache-based attacks when execution is
confined to a single CPU. This method generalizes to arbitrary code, imposes minimal
performance overhead, scales to an arbitrary security lattice, and leverages hardware
features already present in modern CPUs. Specifically, we present an instruction-based
scheduler that eliminates internal timing channel attacks for concurrent programs using
the cache, TLB, CPU bus contention and other hardware factors. We implement the
scheduler for the LIO IFC system and demonstrate that, with a few realistic restrictions,
we can use this scheduler to eliminate such attacks in Hails web applications.

Our contributions are as follows.

– We implement a cache-based internal timing attack for LIO.

– We close the cache-based covert channel by scheduling user-level threads on a
single CPU core based on the number of instructions they execute (as opposed
to the amount of time they execute). Our scheduler can be used to implement
other concurrent IFC systems which implicitly assume instruction-level schedul-
ing (e.g., [7, 10, 11, 21, 23–25, 29, 37, 47, 48, 50, 58, 62, 68]).

– We implement our instruction-based scheduler as part of the Haskell runtime sys-
tem (atop which LIO and Hails are built) and show that the impact on performance
is negligible.

– We augment the LIO [60] semantics to model the cache and formally prove that
instruction-based scheduling removes leaks due to caches.

The paper is organized as follows. Section 2 discusses cache-based attacks and ex-
isting countermeasures. In Section 3 we present our instruction-based scheduling solu-
tion. Section 4 describes our modifications to the Haskell runtime system; and Section 5
analyses performance impact. Formal guarantees and discussions of our approach are
detailed in Sections 6 and 7. We describe related work in Section 8 and conclude in
Section 9.

2 Cache Attacks and Countermeasures

The severity of information leakage attacks through the CPU hardware cache has been
widely considered by the cryptographic community [2, 19, 31, 43, 46]. Unlike crypto
work, where attackers extract sensitive information through the execution of a fixed
crypto algorithm, we consider a scenario in which the attacker provides arbitrary code in
a concurrent IFC system. In our scenario, the adversary is a developer that implements
a Hails app that interfaces with user-sensitive data using LIO libraries.

We found that, knowing only the cache size of the underlying CPU, we can easily
build an app that exploits the shared cache to carry out an internal timing attack that
leaks sensitive data at 0.75 bits/s. Several IFC systems, including [7, 24, 25, 48, 50, 60,
62, 68], model internal timing attacks and address them in their design by only allowing
races to public resources when the racing threads are not affected by secrets. However,
the methods used by these systems are primarily based on programming language ab-
stractions. These approaches are (implicitly) based on instruction-level schedulers in
order to easily express formal guarantees in terms of programming language semantics.
When considering real-world implementations, where scheduling decisions are based
on real time rather than instructions, their formal security guarantees break down since
their proofs are based on invalid assumptions. The instruction-based scheduler proposed
in this work can be used to make the assumptions of such concurrent IFC system match
the situation in practice. In the remainder of this section, we show the internal timing
attack that leverages the hardware cache. We also discuss several existing countermea-
sures that could be employed by Hails.

2.1 Example cache attack

1. lowArray := new Array[M];

2. fillArray(lowArray)

1. if secret 1. for i in [1..n] 1. for i in [1..n+m]

2. then highArray := new Array[M] 2. skip 2. skip

3. fillArray(highArray) 3. readArray(lowArray) 3. outputLow(0)
4. else skip 4. outputLow(1)

thread 1 thread 2 thread 3

Fig. 1. A simple cache attack. The program first allocates an array of size M, corresponding to the
size of the cache, and fills it with arbitrary data (lines 1–2). Following, the program spawns three
threads that run concurrently. The first thread, depending on the secret value, allocates a new
array and fills it with arbitrary data (lines 2–3). Otherwise, it skips (line 4). The second thread
delays computation by n steps (lines 1–2), reads the public array (line 3), and then outputs 1 to a
public channel (line 4). The third thread similarly delays computation, by n+m, steps (lines 1–2),
and outputs 0 to a public channel (line 3).

fillArraythread 1

thread 2

thread 3

thread 1

thread 2

thread 3

cache

cache

time

low
high

mn

1

rdArr 1

readArray

0

0

Fig. 2. Execution of cache attack program of
Figure 1 with secret set to true (top) and false
(bottom).

We mount an internal timing attack by
influencing the scheduling behavior of
threads through the cache. Consider the
code shown in Figure 1. The attack
leaks the secret boolean value secret

in thread 1 by affecting when thread 2

writes to the public channel relative to
thread 3.

The program starts (lines 1–2) by
creating and initializing a public array
lowArray whose size M corresponds to
the cache size; fillArray simply sets
every element of the array to 0. The pro-
gram then spawns three threads that run
concurrently. Assuming a round-robin time-based scheduler, the execution proceeds as
illustrated in Figure 2.

– Depending on the secret value secret, thread 1 either performs a no-operation
(skip on line 4), leaving the cache intact, or evicts lowArray from the cache (lines
2–3) by creating and initializing a new (non-public) array highArray.

– We assume that thread 1 takes less than n steps to complete its execution—a num-
ber that can be determined experimentally; in Figure 2, n is four. Hence, to allow all
the effects on the cache due to thread 1 to settle, thread 2 delays its computation
by n steps (lines 1–2). Subsequently, the thread reads every element of the public
array lowArray (line 3), and finally writes 1 to a public output channel (line 4).
Crucial to carrying out the attack, the duration of thread 2’s reads (line 3) depends
on the state of the cache: if the cache was modified by thread 1, i.e., secret is true,
thread 2 needs to wait for all the public data to be retrieved from memory (as op-
posed to the cache) before producing an output. This requires evicting highArray

from the cache and caching-in lowArray, a process that takes a non-negligible
amount of time. However, if the cache was not touched by thread 1, i.e., secret is
false, thread 2 will get few cache misses and thus produce its output with no delay.

– We assume that thread 2 takes less than m, where m<n, steps to complete reading
lowArray (line 3) when the reads hit the cache, i.e., lowArray was not replaced
by highArray. Like n, this metric can be determined experimentally; in Figure 2,
m is three. Using this, thread 3 simply delays its computation by n+m steps (lines
1–2) and then writes 0 to a public output channel (line 3). The role of thread 3 is to
solely serve as a baseline for thread 2’s output: producing its output before thread

2 when the latter is filling the cache, i.e., secret was true; conversely, it produces
an output after thread 2 if thread 1 did not touch the cache, i.e., secret was false.

We remark that it is precisely the race between thread 2 and thread 3 to write to a
shared public channel, influenced by the cache state, that facilitated the attack. This
attack only leaks one bit; however, it can be easily magnified by wrapping it in a loop.
We note that, in this scenario, we assume that the cache is not affected by other code
running in parallel, i.e., the attacker has full control of the whole cache. However, the
attack is still plausible under weaker assumptions—it only requires attacker to deal with
additional noise, as exemplified by the timing attacks on AES [43].

2.2 Existing countermeasures

The internal timing attack arises as a result of cache effects influencing threads schedul-
ing behavior. Several hardware designs, however, provide means to safely deal with
cache effects.

Flushing the cache Naively, we can flush the cache on every context switch. In the
context of Figure 1, this guarantees that, when thread 2 executes the readArray in-
struction, its duration is not affected by thread 1 evicting lowArray from the cache—the
cache will always be flushed on a context switch, hence thread 3 will always write to
the output channel first.

No-fill cache mode Several architectures, including Intel’s Xeon and Pentium 4, sup-
port a cache no-fill mode [26]. In this mode, read/write hits access the cache; misses,
however, read from and write to memory directly, leaving the cache unchanged. As
considered by Zhang et al. [70], we can execute all threads that operate on non-public
data in this mode. This approach guarantees that sensitive data cannot affect the cache.
Unfortunately, threads operating on non-public data and relying on the cache will suffer
from performance degradation. Of course, the performance of public threads will not
be altered.

Partitioned cache Another approach is to partition the cache according to the number
of security levels, as suggested in [70]. Using this architecture, a thread computing
on secret data only accesses the secret partition, while a thread computing on public
data only access the public one. This approach effectively corresponds to giving each
differently-labeled thread access to its own cache; as a result, the scheduling behavior
of public threads cannot be affected by evicting data from the cache.

Unfortunately, none of the aforementioned solutions can be used in systems built
with Hails (like GitStar). Flushing the cache is prohibitively expensive for preemptive

thread 1

thread 2

thread 3

cache

thread 1

thread 2

thread 3

cache

readArray 1

0

fillArray

1

0 time

low
high

rdArr

Fig. 3. Execution of cache attack program of Figure 1 with secret set to true (top) and false
(bottom). In both executions, we highlight that the threads execute one “instruction” at a time in a
round-robin fashion. The concurrent threads take the same amount of time to complete execution
as in Figure 2. However, since we use instructions to context switch threads, the interleaving
between thread 2 or 3 is not influenced by the actions in thread 1, and thus the internal timing
attack does not arise–the threads’ output order cannot encode sensitive data.

systems that perform a context switch hundreds of times per second—the impact on
performance would gravely reduce usability. The no-fill mode solution is well suited
for systems wherein the majority of the threads operate on public data. In such cases,
only threads operating on sensitive data will incur a performance penalty. In the con-
text of Hails, the solution is only slightly less expensive than flushing the cache. Hails
threads handle HTTP requests that operate on individual (non-public) user data, hence
most threads will not be using the cache. Another consequence of threads handling
differently-labeled data is that partitioned caches can only be used in a limited way (see
Section 8). Specifically, to address internal timing attacks, it is required that we parti-
tion the cache according to the number of security levels in the lattice. Given that most
existing approaches can only partition caches up to 16-ways at the OS level [36], and
fewer at the hardware level, an alternative scalable approach is necessary. Moreover,
neither flushing nor partitioning the cache can handle timing perturbations arising from
other pieces of hardware such as the TLB, buses, etc.

3 Instruction-based Scheduling

As the example in Figure 2 shows, races to acquire public resources are affected by
the cache state, which in turn might be affected by secret values. It is important to
highlight that the number of instructions executed in a given quantum of time might
vary depending on the state of the cache. It is precisely this variability that reintroduces
dangerous races into systems. However, the actual set of instructions executed is not
affected by the cache. Hence, we propose scheduling threads according to the number
of instructions they execute, rather than the amount of time they consume. The point
at which a thread produces an output (or any other visible operation) is determined
according to the number of instructions it has executed, a measurement unaffected by
the amount of time it takes to perform a read/write from memory.

Consider the code in Figure 1 executing atop an instruction-based scheduler. An
illustration of this is shown in Figure 3. For simplicity of exposition, the instruction
granularity is at the level of commands (skip, readArray, etc.) and therefore context

switches are triggered after one command gets executed. (In Section 4, we describe a
more practical and realistic instruction-based scheduler.) Observe that the amount of
time it takes to execute an instruction has not changed from the time-based scheduler of
Figure 2. For example, readArray still takes 6 units of time when secret is true, and
2 when it is false. Different from Figure 2, however, the interleaving between thread

2 and thread 3 did not change depending on the state of the cache (which did change
according to secret). Therefore, a race to write to the public channel between thread

2 and thread 3 cannot be caused by the secret, through the cache. The second thread
always executes n+1 = 5 instructions before writing 1 to the public channel, while the
third thread always executes n+m+1 = 8 instructions before writing 0.

Our proposed countermeasure, as implemented in Section 4, eliminates the cache-
based internal timing attacks without sacrificing scalability and with a minor perfor-
mance impact. With instruction-based scheduling, we do not require flushing of the
cache. In this manner, applications can safely utilize the cache to retain most of their
performance without giving up system-security, and unlike current partitioned caches,
we can scale up to consider arbitrarily complex lattices.

4 Implementation

We implemented an instruction-based scheduler for LIO. In this section, we describe
this implementation and detail some key design features we believe to be useful when
modifying concurrent IFC systems to address cache-based timing attacks.

4.1 LIO and Haskell

LIO is a Haskell library that exposes concurrency to programmers in the form of “green”,
lightweight threads. Each LIO thread is a native Haskell thread that has an associated
security level (label) which is used to track and control the flow of information to/from
the thread. LIO relies on Haskell libraries for creating new threads and the runtime
system for managing them.

In general, M lightweight Haskell threads may concurrently execute on N OS threads.
(It is common, however, for multiple Haskell threads to execute on a single OS thread,
i.e., M ∶ 1 mapping.) The Haskell runtime, as implemented by the Glasgow Haskell
Compilation (GHC) system, uses a round-robin scheduler to context switch between
concurrently executing threads. Specifically, the scheduler is invoked whenever a thread
blocks/terminates or a timer signal alarm is received. The timer is used to guarantee that
the scheduler is periodically executed, allowing the runtime to implement preemptive
scheduling.

4.2 Instruction-based scheduler

As previously mentioned, timing-based schedulers render systems, such as LIO, vul-
nerable to cache-based internal timing attacks. We implement our instruction-based
scheduler as a drop-in replacement for the existing GHC scheduler, using the number
of retired instructions to trigger a context switch.

Specifically, we use performance monitoring units (PMUs) present in almost all
recent Intel [26] and AMD [4] CPUs. PMUs expose hardware performance counters
that are typically used by developers to optimize code—they provide metrics such as
the number of cache misses, instructions executed per cycle, branch mispredictions, etc.
Importantly, PMUs also provide a means for counting the number of retired instructions.

Using the perfmon2 [15] Linux monitoring interface and helper user-level library
libpfm4, we modified the GHC runtime to configure the underlying PMU to count the
number of retired instructions the Haskell process is executing. Specifically, with perf-
mon2 we set a data performance counter register to 264−n, which the CPU increments
upon retiring an instruction.3 Once the counter overflows, i.e., n instructions have been
retired, perfmon2 is sent a hardware interrupt. In our implementation, we configured
perfmon2 to handle the interrupt by delivering a signal to the GHC runtime.

If threads share no resources, upon receiving a signal, the executing Haskell thread
can immediately save its state and jump to the scheduler. However, preempting a thread
which is operating on a shared memory space can be dangerous, as the thread may
have left memory in an inconsistent state. (This is the case for many language runtimes,
not solely GHC’s.) To avoid this, GHC produces code that contains safe points where
threads may yield. Hence, a signal does not cause an immediate preemption. Instead,
the signal handler simply sets a flag indicating the arrival of a signal; at the next safe
point, the thread “cooperatively” yields to the scheduler.

To ensure liveness, we must guarantee that given any point in execution, a safe point
is reached in n instructions. Though GHC already inserts many safe points as a means
of invoking the garbage collector (via the scheduler), tight loops that do not perform any
allocation are known to hang execution [1]. Addressing this eight-year old bug, which
would otherwise be a security concern in LIO, we modified the compiler to insert safe
points on function entry points. This modification, integrated in the mainline GHC, has
almost no effect on performance and only a 7% bloat in average binary size.

4.3 Handling IO

Threads yield at safe points in their execution paths as a result of a retired instruction
signal. However, there are circumstances in which threads would like to explicitly yield
prior to the reception of a retired instruction signal. In particular, when a thread per-
forms an IO action, GHC runs the action asynchronously and blocks the thread which
initiated the action. Thus, any IO action is a yield which allows the thread to give up
the rest of their scheduling quantum.

While yields are not intrinsically unsafe, it is not safe to allow the leftover schedul-
ing quantum to be passed on to the next thread. Thus, after running any asynchronous
IO action, the runtime must reset the retired instruction counter. Hence, whenever a
thread enters the scheduler loop due to being blocked, we reset the retired instruction
counter.

3 Though the bit-width of the hardware counters vary (they are typically 40-bits wide) perfmon2
internally manages a 64-bit counter.

●●

●
●

●●
●●

●●

●

●

●●

●

●

0.
00

6
0.

01
0

0.
01

4
0.

01
8

W
al

l t
im

e
in

 s
ec

on
ds

●●

●
●

●●
●●

●●

●

●

●●

●

●

Fig. 4. Mean time between timer signal and retired-instruction signal. Each point represents a
program from no�b, which have been sorted on the x-axis by their mean time.

5 Performance Evaluation

We evaluated the performance of instruction-based scheduling against existing time-
based approaches using the no�b benchmark suite [45]. no�b is the standard bench-
marking suite used for measuring the performance of Haskell implementations.

In our experimental setup, we used the latest development version of GHC (the Git
master branch as of November 6, 2012). The measurements were taken on the same
hardware as Hails [16]: a machine with two dual-core Intel Xeon E5620 (2.4GHz) pro-
cessors, and 48GB of RAM.

We first needed to find an instruction budget—number of instructions to retire be-
fore triggering the scheduler. We found a poorly chosen instruction budget could in-
crease runtime by 100%. To determine a good parameter, we measured the mean time
between retired-instruction signals with an initially guessed instruction budget param-
eter. We then adjusted the parameter so the median test program had a 10 millisecond
mean time-slice (the default quantum size in vanilla GHC with time-based scheduling)
and verified our final choice by re-running the measurements. For our specific setup, an
instruction budget of approximately 37,100,000 retired-instructions corresponded to a
10 millisecond time quantum. We plot the mean and standard deviation across all no�b
applications with the final tuning parameter in Figure 4. We found that most programs
receive a signal within 2 milliseconds of when they would have normally received the
signal using the standard time-based scheduler. While the instruction budget parameter
will vary across machines, it is relatively simple to bootstrap this parameter by perform-
ing these measurements at startup and tuning the budget accordingly.

Next, we compared the performance of Haskell’s timer-based scheduler with our
instruction-based scheduler. We used a subset of the no�b benchmark suite called the
real benchmark, which consists of “real world programs”, as opposed to synthetic
benchmarks (however, results for the whole no�b suite are comparable). Figure 5 shows
the run time of these programs with both scheduling approaches. With an optimized in-
struction budget parameter, instruction-based scheduling has no impact to the runtime

scs
hidden

cacheprof
fulsom

compress2
compress

anna
hpg
infer

maillist
gamteb
parser

fem
rsa

bspt
gg

reptile
fluid

symalg
Normal scheduler
Instruction−based scheduler

Run time in seconds

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 5. Change to run time from instruction-based scheduling

of the majority of nofib applications and results in only a very slight increase in runtime
for others (about 1%).

This result may seem surprising: instruction-based scheduling purposely punishes
threads with good data locality, so one might expect a more substantial performance
impact. There are two reasons why this is not the case. First, with preemptive schedul-
ing, we are already inducing cache misses when we switch from running one thread to
another—instruction-based scheduling only perturbs when these preempts occur, and as
seen in Figure 4, these perturbations are very minor. Second, lazy functional programs
are known to exhibit relatively poor (though non-zero!) data locality [42], which means
in the average case, instruction-based scheduling will be very similar to time-based
scheduling, as demonstrated by our experiments.

6 Cache-aware semantics

In this section we recall relevant design aspects of LIO [60] and extend the original for-
malization to consider how caches affect the timing behavior of programs. Importantly,
we formalize instruction-based scheduling and show how it removes cache-based inter-
nal timing covert channels.

6.1 LIO Overview

At a high level, LIO provides the LIO monad, which is used in place of IO. Wrapping
standard Haskell libraries, LIO exports a collection of functions that untrusted code may
use to access the filesystem, network, shared variables, etc. Unlike the standard libraries,
which usually return IO actions, these functions return actions in the LIO monad, thus
allowing LIO to perform label checks before executing a potentially unsafe action.

Internally, the LIO monad keeps track of a current label, Lcur. The current label is
effectively a ceiling over the labels of all data that the current computation may depend
on. This label eliminates the need to label individual definitions and bindings: symbols
in scope are (conceptually) labeled with Lcur.4 Hence, when a computation C, with
current label LC, observes an object labeled LO, C’s label is raised to the least upper
bound or join of the two labels, written LC ⊔LO. Importantly the current label governs
where the current computation can write, what labels may be used when creating new
channels or threads, etc. For example, after reading C, the computation should not be
able to write to a channel K if LC is more restricting than LK—this would potentially
leak sensitive information (about O) into a less sensitive channel.

Note that an LIO computation can only execute a sub-computation on sensitive
data by either raising its current label or forking a new thread in which to execute this
sub-computation. In the former case, raising the current label prevents writing to less
sensitive endpoints. In the latter case, to observe the result (or timing and termination
behavior) of the sub-computation the thread must wait for the thread to finish, which
first raises the current label. A consequence of this design is that differently-labeled
computations are decoupled, which, as mentioned in Section 1, is key to eliminating
the internal timing covert channel.

In the next subsection, we will outline the semantics for a cache-aware, time-based
scheduler where the cache attack described in Section 2 is possible. Moreover, we show
that we can easily adapt this semantics to model the new LIO instruction-based sched-
uler. Interested readers may refer to the extended version of the paper, which can be
found online at [61].

6.2 Cache-aware semantics

We model the underlying CPU cache as an abstract memory shared among all running
threads, which we will denote with the symbol ζ . Every step of the sequential execution
relation will affect ζ according to the current instruction being executed, the runtime
environment, and the existing state of the cache.

As in [60], we consider that each LIO thread has a thread-local runtime environment
σ , which contains the current label σ .lbl. The global environment Σ , common to all
threads, holds references to shared resources.

In addition, we explicitly model the number of machine cycles taken by a single
execution step as a result of the cache. Specifically, the transition ζ ⇁(Σ ,σ ,e)

k ζ
′ captures

the parameters that influence the cache (Σ , σ , and e) as well as the number of cycles k
it takes for the cache to be updated.

A cache-aware evaluation step is obtained by merging the reduction rule of LIO
with our formalization of CPU cache as given below:

jΣ ,⟨σ ,e⟩o γ⇀ jΣ ′,⟨σ ′,e′⟩o ζ ⇁(Σ ,σ ,e)
k ζ

′ k ≥ 1

jΣ ,⟨σ ,e⟩oζ

γÐ→k jΣ ′,⟨σ ′,e′⟩oζ ′

4 As described in [59], LIO does, however, allow programmers to heterogeneously label data
they consider sensitive.

We read jΣ ,⟨σ ,e⟩oζ

γÐ→k jΣ ′,⟨σ ′,e′⟩oζ ′ as “the configuration jΣ ,⟨σ ,e⟩o reduces to
jΣ ′,⟨σ ′,e′⟩o in one step, but k machine cycles, producing event γ and modifying the

cache from ζ to ζ
′”. As in LIO [60], the relation jΣ ,⟨σ ,e⟩o γ⇀ jΣ ′,⟨σ ′,e′⟩o represents

a single execution step from thread expression e, under the run-time environments Σ

and σ , to thread expression e′ and run-time environments Σ
′ and σ

′. Events are to
communicate between the threads and the scheduler, e.g., when spawning new threads.

(STEP)
jΣ ,⟨σ ,e⟩oζ Ð→k jΣ

′,⟨σ ′,e′⟩oζ ′ q > 0

jΣ ,ζ ,q,⟨σ ,e⟩ ⊲ tso ↪ jΣ
′,ζ ′,q−k,⟨σ ′,e′⟩ ⊲ tso

(PREEMPT)
q ≤ 0

jΣ ,ζ ,q,t ⊲ tso ↪ jΣ
′,ζ ,qi,ts ⊳ to

Fig. 6. Semantics for threadpools under round-robin time-based scheduling

Figure 6 shows the most important rules of our time-based scheduler in the presence
of cache effects. We elide the rest of the rules for brevity. The relation ↪ represents
a single evaluation step for the threadpool, in contrast with Ð→ which is only for a
single thread. Configurations are of the form jΣ ,ζ ,q,tso, where Σ is the global runtime
environment, ζ represents the state of the cache, q is the number of cycles available in
the current time slice, and ts is a queue of thread configurations of the form ⟨σ ,e⟩. We
use a standard deque-like interface with operations ⊲ and ⊳ for front and back insertion,
respectively, i.e., ⟨σ ,e⟩ ⊲ ts denotes a threadpool in which the first thread is ⟨σ ,e⟩ while
ts ⊳ ⟨σ ,e⟩ indicates that ⟨σ ,e⟩ is the last one.

As in LIO, threads are scheduled in a round-robin fashion. Our scheduler relies on
the number of cycles that each step takes; we respectively write qi and q as the initial
and remaining number of cycles assigned to a thread in each quantum. In rule (STEP),
the number of cycles k that the current instruction takes is reflected in the scheduling
quantum. Consequently, threads that compute on data that is not present in the cache
will take more cycles, i.e., have a higher k, so they will run “slower” because they are
allowed to perform fewer reduction steps in the remaining time slice. In practice, this
permits the implementation of attacks, such as that in Figure 1, where the interleaving
of the threads can be affected by sensitive data. Rule (PREEMPT) is used when the
thread has exhausted its cycle budget, triggering a context switch by moving the current
thread to the end of the queue.

We can adapt this semantics to reflect the behavior of the new instruction-based
scheduler. Essentially, we replace the number of cycles q with an instruction budget;
we write bi for the initial instruction budget and b for the current budget. Crucially, we
change rule (STEP) into rule (STEP-CA), given by

(STEP-CA)
jΣ ,⟨σ ,e⟩oζ Ð→k jΣ ′,⟨σ ′,e′⟩oζ ′ b > 0

jΣ ,ζ ,b,⟨σ ,e⟩ ⊲ tso ↪ jΣ ′,ζ ′,b−1,⟨σ ′,e′⟩ ⊲ tso
.

Rule (STEP-CA) executes a sequential instruction in the current thread, provided
the instruction budget is not empty (b > 0), and updates the cache accordingly
(jΣ ,⟨σ ,e⟩oζ Ð→k jΣ ′,⟨σ ′,e′⟩oζ ′). It is important to remark here that the effects of the
underlying cache ζ , as indicated by k, are intentionally ignored by the scheduler. This
subtle detail captures the essence of removing the cache-based internal timing channel.
(Our formalization of a time-based scheduler does not ignore k and thus is vulnerable.)
Similarly, rule (PREEMPT) turns into rule (PREEMPT-CA), where q and qi are respec-
tively replaced with b and bi to reflect the fact that there is an instruction budget instead
of a cycle count. The rest of the rules can be adapted in a straightforward manner. Our
rules have the invariant that the instruction budget gets decremented by one when a
thread executes one instruction.

By changing the cache-aware semantics in this way, we obtain a semantics which
is essentially a generalization of the previous semantics for LIO [60]. In fact, the se-
mantics in the previous paper correspond to the instance where bi = 1, i.e. the threads
perform only one reduction step before a context-switch happens. Therefore, it is easy
to extend our previous termination-sensitive non-interference result to the instruction-
based semantics, highlighting the security guarantees of this approach.

The interested reader can refer to the extended version of the paper at [61] for the
complete set of modified rules and a more detailed discussion about the proofs.

7 Discussions

In this section we discuss some of the engineering aspects of instruction-based schedul-
ing when used in a practical system such as Hails.

Nondeterminism in the hardware counters While the retired-instruction counter should
be deterministic, in most hardware implementations there is some degree of nondeter-
minism. For example, on most x86 processors the instruction counter adds an extra in-
struction every time a hardware interrupt occurs [67]. This anomaly could be exploited
to affect the behavior of an instruction-based scheduler, causing it to trigger a signal
early. However, this is only a problem if a high thread is able to cause a large number of
hardware interrupts in the underlying operating system. In the Hails framework, attack-
ers can trigger interrupts by forcing a server to frequently receive HTTP responses, i.e.,
trigger a hardware interrupt from the network interface card. Hails, however, provides
mechanisms to mitigate the effects of external events, using the techniques of [5, 69],
that can reduce the frequency of such operations. Nevertheless, the feasibility of such
attacks is not directly clear and left as future work.

Scheduler and garbage collector instruction counts For performance reasons, we do
not reset the retired-instruction counter prior to re-entering user code. This means that
instruction counts include the instructions executed by the scheduler and garbage col-
lector. As a result, threads could effectively execute less instructions than originally
planned, e.g., by triggering the garbage collector several times during their instruction
budget. Similarly, threads could execute more instructions than planned, e.g., by trig-
gering the garbage collector near the end of the instruction budget. While this variability

in the number of instructions executed seems dangerous, it does not jeopardize security.
In particular, information-flow checks in LIO enforce that yielding execution or trigger-
ing the garbage collector cannot depend on data from higher (or incomparable) security
levels, and, as such, perturbation in the count can only lead to performance degradation.

Parallelism Unfortunately, we cannot simply run instruction-based scheduling on mul-
tiple cores. Threads running in parallel will be able to race to public resources. Under
normal conditions, such races can be still influenced by the state of the (L3) cache.
Some parallelism is, however, possible. For instance, we can extend the instruction-
based scheduler to parallelize regions of code that do not share state or have side effects
(e.g., synchronization operations or writes to channels). To this end, when a thread
wishes to perform a side-effect, it is required that all the other threads lagging behind (as
per retired-instruction count) first complete the execution of their side-effects. Hence,
an implementation would rely on a synchronization barrier whenever a side-effecting
computation is executed; at the barrier, the execution of all the side-effects is done in a
pre-determined order. Although we believe that this “optimization” is viable, we have
not implemented it, since it requires major modifications to the GHC runtime system
and the performance gains due to parallelism requiring such strict synchronization bar-
riers are not clear. We leave this investigation to future work. Even without built-in par-
allelism, we believe that instruction-based scheduling represents a viable and deploy-
able solution when considering modern web applications and data-centers. In particular,
when an application is distributed over multiple machines, these machines do not share
a processor cache and thus can safely run the application concurrently. Attacks which
involve making these two machines access shared external resources can be mitigated
in the same fashion as external timing attacks [5, 60, 69, 70]. Load-balancing an appli-
cation in this manner is already a well-established technique for deploying applications.

8 Related work

Impact of cache on cryptosystems Kocher [30] was one of the first to consider the se-
curity implications of memory access-time in implementations of cryptographic primi-
tives and systems. Since then, several attacks (e.g., [2, 19, 31, 43, 46]) against popular
systems have successfully extracted secret keys by using the cache as a covert channel.
As a countermeasure, several authors propose partitioning the cache [31, 44, 66]. Un-
til recently, partitioned caches have been of limited application in dynamic information
flow control systems due to the small number of partitions available. The recent Vantage
cache partition scheme of Sanchez and Kozyrakis [55], however, offers tens to hundreds
of configurable partitions and high performance. As hardware is not yet available with
Vantage, it is hard to evaluate its effectiveness for our problem domain. However, we
expect it to be mostly complimentary to our instruction-based scheduler. Specifically,
a partitioned cache can be used to safely run threads in parallel, each group of threads
using instruction-based schedulers. Other countermeasures (e.g., [19, 43]) are primarily
implementation-specific, and, while applicable to cryptographic primitives, they do not
easily generalize to arbitrary code.

Language-based information-flow security Several works [10, 11, 18, 21–23, 29, 37,
47, 58] consider systems that satisfy possibilistic non-interference, which states that a
concurrent program is secure iff the possible observable events do not depend on sensi-
tive data. An alternative notion, probabilistic non-interference, considers a concurrent
program secure iff the probability distribution over observable events is not affected by
sensitive data. The works of [54, 56, 57, 65] consider this notion by defining a transition
rule for thread pools that is probabilistic, dependent on a chosen scheduler and the ex-
ecuted program. Zdancewic and Myers introduce observational low-determinism [68],
which intuitively states that the observable behavior of concurrent systems must be de-
terministic. After this seminal work, several authors improve on each other’s definitions
on low-determinism [24, 25, 62]. The systems in [7, 48, 50, 60] rely on deterministic
semantics and a determined class of runtime schedulers.

The work mentioned above assume that the execution of a single stepis performed
in a single unit of time, corresponding to an instruction, and show that races to publicly-
observable events cannot be influenced by secret data. Unfortunately, the presence of
the cache breaks the correspondence between an instruction and a single unit of time,
making cache attacks viable. Instruction-based scheduling could be seen as a compo-
nent to take previous concurrent IFC approaches into practice.

Agat [3] presents a code transformation for sequential programs such that both code
paths of a branch have the same memory access pattern. This eliminates timing chan-
nels, even those relying on the cache. This transformation has been adapted for concur-
rent languages [51, 52, 54], rephrased as a unification problem [32], and implemented
using transactions [6]. This approach, however, focuses on avoiding attacks relying on
the data cache, while leaving the instruction cache unattended.

Russo and Sabelfeld [49] consider non-interference for concurrent systems under
cooperative and deterministic scheduling. An implementation of such a system was pre-
sented by Tsai et al. in [63]. This approach eliminates internal timing leaks, including
those relying on the cache, by restricting the use of yields. Cooperative schedulers are
intrinsically vulnerable to attacks that use termination as a covert channel. In contrast,
our solution is able to safely preempt non-terminating computations while guaranteeing
termination-sensitive non-interference.

Secure multi-execution [13, 14, 27] preserves confidentiality of data by executing
the same sequential program several times, one for each security level. In this scenario,
the cache-based covert channel can only be removed in specific configurations. Zhang
et al. [70] provide a method to mitigate external events when their timing behavior
could be affected by the underlying hardware. This solution is directly applicable to our
system when considering external events. Similar to our work, they consider an abstract
model of the hardware machine state which includes a description of time. However,
their semantics focus on sequential programs, wherein attacks due to the cache arise in
the form of externally visible events.

Hedin and Sands [20] present a type-system for preventing external timing attacks
for bytecode. Their semantics is augmented to incorporate history, which enables the
modeling of cache effects. We proceed in a similar manner when extending the original
LIO semantics [60] to consider caches.

System security In order to achieve strong isolation, Barthe et al. [8] present a model of
virtualization which flushes the cache upon switching between guest operating systems.
Different from our scenario, flushing the cache is such scenarios is common and does
not impact the already-costly context-switch.

Allowing some information leakage, Kopft et al. [33] combines abstract interpre-
tation and quantitative information-flow to analyze leakage bounds for cache attacks.
Kim et al. [28] propose StealthMem, a system level protection against cache attacks.
StealthMem allows programs to allocate memory which does not get evicted from the
cache. In fact, this approach could be seen as a software-level partition of the cache.
StealthMem is capable of enforcing confidentiality for a stronger attacker model than
ours, i.e., they consider programs with access to a wall clock and perhaps running on
multi-cores. As other work on partition caches, StealthMem might not be adequate for
scenarios with arbitrarily complex security lattices.

Performance monitoring counters The use of PMCs for tasks other than performance
monitoring is a relatively recent one. Vogl and Ekert [64] also use PMCs, but for mon-
itoring applications running within a virtual machine, allowing instruction level mon-
itoring of all or specific instructions. While the mechanism is the same, our goals are
different: we merely seek to replace interrupts generated by a clock-based timer with
interrupts generated by hardware counters; their work introduces new interrupts that
trigger vmexits. This causes a considerable slowdown, while we achieve no major per-
formance impact.

9 Conclusion

Cache-based internal timing attacks constitute a practical set of attacks. We present
instruction-based scheduling as a solution to remove such attacks. Different from sim-
ply flushing the cache on a context switch or partitioning the cache, this new class of
schedulers also removes timing perturbations introduced by other components of the
underlying hardware (e.g., the TLB, CPU buses, etc.). To demonstrate the applicability
of our solution, we implemented a scheduler using the CPU retired-instruction counters
available on commodity Intel and AMD hardware. We integrated the scheduler into the
Hails IFC web framework replacing the timing-based scheduler. This integration was, in
part, possible because of the scheduler’s negligible performance impact and, in part, due
to our formal guarantees. Specifically, by generalizing previous results, we proved that
instruction-based scheduling for LIO preserves confidentiality and integrity of data, i.e.,
termination-sensitive non-interference. Finally, we remark that our design, implemen-
tation, and proof are not limited to LIO; we believe that instruction-based scheduling
is applicable to other concurrent deterministic IFC systems where cache-based timing
attacks could be a concern.

Acknowledgments

This work was funded by DARPA CRASH under contract #N66001-10-2-4088, by mul-
tiple gifts from Google, and by the Swedish research agency VR and STINT. Deian
Stefan is supported by the DoD through the NDSEG Fellowship Program.

Bibliography

[1] Infinite loops can hang Concurrent Haskell. http://hackage.haskell.org/trac/ghc/
ticket/367, 2005.

[2] O. Aciiçmez. Yet another microarchitectural attack:: exploiting I-cache. In Proceedings of
the 2007 ACM workshop on Computer security architecture, CSAW ’07. ACM, 2007.

[3] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles of Programming
Languages, pages 40–53, Jan. 2000.

[4] AMD. BIOS and kernel developer’s guide for AMD family 11h processors, July 2008.
[5] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of timing channels.

In Proc. of the 17th ACM CCS. ACM, 2010.
[6] G. Barthe, T. Rezk, and M. Warnier. Preventing timing leaks through transactional branch-

ing instructions. Electron. Notes Theor. Comput. Sci., 153, May 2006.
[7] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by

compilation. In Proc. European Symp. on Research in Computer Security, pages 2–18,
Sept. 2007.

[8] G. Barthe, G. Betarte, J. Campo, and C. Luna. Cache-leakage resilient os isolation in an
idealized model of virtualization. In Computer Security Foundations Symposium (CSF),
2012 IEEE 25th. IEEE Computer Society, june 2012.

[9] J. Bonneau and I. Mironov. Cache-collision timing attacks against AES. Cryptographic
Hardware and Embedded Systems-CHES 2006, pages 201–215, 2006.

[10] Boudol and Castellani. Noninterference for concurrent programs. In Proc. ICALP’01,
volume 2076 of LNCS. Springer-Verlag, July 2001.

[11] G. Boudol and I. Castellani. Non-interference for concurrent programs and thread systems.
Theoretical Computer Science, 281(1), June 2002.

[12] W. Cheng, D. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling, D. Curtis, L. Shrira,
and B. Liskov. Abstractions for usable information flow control in aeolus. Submitted for
publication, 2012.

[13] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web browser with
flexible and precise information flow control. In Proceedings of the 19th ACM conference
on Computer and Communications Security (CCS 2012). ACM, 2012.

[14] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In Proc. of
the 2010 IEEE Symposium on Security and Privacy, SP ’10. IEEE Computer Society, 2010.

[15] S. Eranian. Perfmon2: a flexible performance monitoring interface for Linux. In Proc. of
the 2006 Ottawa Linux Symposium, pages 269–288. Citeseer, 2006.

[16] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. Mitchell, and A. Russo. Hails:
Protecting data privacy in untrusted web applications. In Proc. of the 10th Symposium on
Operating Systems Design and Implementation, October 2012.

[17] V. D. Gligor. A Guide to Understanding Covert Channel Analysis of Trusted Systems (Light
Pink Book). National Computer Security Center, NCSC-TG-030 edition, November 1993.

[18] G. L. Guernic. Automaton-based confidentiality monitoring of concurrent programs. In
Proc. of the 20th IEEE Computer Security Foundations Symposium, CSF ’07. IEEE Com-
puter Society, 2007.

[19] D. Gullasch, E. Bangerter, and S. Krenn. Cache games – bringing access-based cache
attacks on AES to practice. In Proceedings of the 2011 IEEE Symposium on Security and
Privacy, SP ’11. IEEE Computer Society, 2011.

[20] D. Hedin and D. Sands. Timing aware information flow security for a javacard-like byte-
code. Elec. Notes Theor. Comput. Sci., 141, 2005.

[21] M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous pi-
calculus. ACM Trans. Program. Lang. Syst., 24(5), Sept. 2002.

[22] K. Honda and N. Yoshida. A uniform type structure for secure information flow. ACM
Trans. Program. Lang. Syst., Oct. 2007.

[23] K. Honda, V. T. Vasconcelos, and N. Yoshida. Secure information flow as typed process be-
haviour. In Proc. of the 9th European Symposium on Programming Languages and Systems.
Springer-Verlag, 2000.

[24] M. Huisman and T. M. Ngo. Scheduler-specific confidentiality for multi-threaded programs
and its logic-based verification. In Proceedings of the 2011 international conference on
Formal Verification of Object-Oriented Software, FoVeOOS’11. Springer-Verlag, 2012.

[25] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of observational
determinism. In Proc. IEEE Computer Sec. Foundations Workshop, July 2006.

[26] Intel. Intel 64 and IA-32 architectures software developer’s manual, August 2012.
[27] M. Jaskelioff and A. Russo. Secure multi-execution in Haskell. In Proc. Andrei Ershov

International Conference on Perspectives of System Informatics, LNCS. Springer-Verlag,
June 2011.

[28] T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealthmem: system-level protection against
cache-based side channel attacks in the cloud. In Proceedings of the 21st USENIX confer-
ence on Security symposium, Security’12. USENIX Association, 2012.

[29] N. Kobayashi. Type-based information flow analysis for the π-calculus. Acta Inf., 42(4),
Dec. 2005.

[30] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Proc. of the 16th CRYPTO. Springer-Verlag, 1996.

[31] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. Deconstructing new cache designs for
thwarting software cache-based side channel attacks. In Proceedings of the 2nd ACM work-
shop on Computer security architectures, CSAW ’08. ACM, 2008.

[32] B. Köpf and H. Mantel. Eliminating implicit information leaks by transformational typing
and unification. In Formal Aspects in Security and Trust, Third International Workshop
(FAST’05), volume 3866 of LNCS. Springer-Verlag, July 2006.

[33] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic quantification of cache side-channels. In
Proceedings of the 24th international conference on Computer Aided Verification, CAV’12.
Springer-Verlag, 2012.

[34] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A World Wide Web With-
out Walls. In 6th ACM Workshop on Hot Topics in Networking (Hotnets), Atlanta, GA,
November 2007.

[35] B. W. Lampson. A note on the confinement problem. Communications of the ACM, 16(10):
613–615, 1973.

[36] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into mul-
ticore cache partitioning: Bridging the gap between simulation and real systems. In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International Sympo-
sium on, pages 367–378. IEEE, 2008.

[37] H. Mantel, H. Sudbrock, and T. Krausser. Combining different proof techniques for verify-
ing information flow security. In Proc. of the 16th international conference on Logic-based
program synthesis and transformation, LOPSTR’06. Springer-Verlag, 2007.

[38] J. McHugh. Covert channel analysis. In Handbook for the Computer Security Certifica-
tion of Trusted Systems. Center for High Assurance Computing Systems, Naval research
Laboratory, 4555 Overlook Ave, SW, Washington, DC 20375, 1995.

[39] J. Millen. 20 years of covert channel modeling and analysis, 1999.
[40] I. Moskowitz and M. Kang. Covert channels-here to stay? In Computer Assurance, 1994.

COMPASS’94 Safety, Reliability, Fault Tolerance, Concurrency and Real Time, Security.
Proceedings of the Ninth Annual Conference on, pages 235–243. IEEE, 1994.

[41] A. C. Myers and B. Liskov. A decentralized model for information flow control. In Proc.
of the 16th ACM Symp. on Operating Systems Principles, pages 129–142, 1997.

[42] N. Nethercote and A. Mycroft. The cache behaviour of large lazy functional programs
on stock hardware. In Proceedings of the ACM SIGPLAN Workshop on Memory System
Performance (MSP 2002, pages 44–55. ACM Press, 2002.

[43] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the case of
AES. In Proceedings of the 2006 The Cryptographers’ Track at the RSA conference on
Topics in Cryptology, CT-RSA’06. Springer-Verlag, 2006.

[44] D. Page. Partitioned cache architecture as a side-channel defence mechanism. IACR Cryp-
tology ePrint Archive, 2005, 2005.

[45] W. Partain. The nofib benchmark suite of Haskell programs. Proceedings of the 1992
Glasgow Workshop on Functional Programming, 1992.

[46] C. Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005, 2005.
[47] F. Pottier. A simple view of type-secure information flow in the π-calculus. In In Proc. of

the 15th IEEE Computer Security Foundations Workshop, pages 320–330, 2002.
[48] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In

Proc. IEEE Computer Sec. Foundations Workshop, pages 177–189, July 2006.
[49] A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative schedul-

ing. In Proc. Andrei Ershov International Conference on Perspectives of System Informatics
(PSI), LNCS. Springer-Verlag, June 2006.

[50] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels by
transformation. In Proc. of Asian Computing Science Conference, LNCS. Springer-Verlag,
Dec. 2006.

[51] A. Sabelfeld. The impact of synchronisation on secure information flow in concurrent
programs. In Proc. Andrei Ershov International Conference on Perspectives of System In-
formatics, volume 2244 of LNCS, pages 225–239. Springer-Verlag, July 2001.

[52] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs.
In Proc. Symp. on Static Analysis, volume 2477 of LNCS, pages 376–394. Springer-Verlag,
Sept. 2002.

[53] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1), January 2003.

[54] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Sec. Foundations Workshop, pages 200–214, July 2000.

[55] D. Sanchez and C. Kozyrakis. Vantage: Scalable and efficient fine-grain cache partitioning.
In International Symposium on Computer Architecture. ACM IEEE, 2011.

[56] Smith. Probabilistic noninterference through weak probabilistic bisimulation. In Proc.
IEEE Computer Sec. Foundations Workshop, pages 3–13, 2003.

[57] G. Smith. A new type system for secure information flow. In Proc. IEEE Computer Sec.
Foundations Workshop, June 2001.

[58] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In Proc. ACM Symp. on Principles of Programming Languages, pages 355–364, Jan. 1998.

[59] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow
control in Haskell. In Haskell Symposium. ACM SIGPLAN, September 2011.

[60] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières. Addressing
covert termination and timing channels in concurrent information flow systems. In Proc.
of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP),
September 2012.

[61] D. Stefan, P. Buiras, E. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières. Eliminating
cache-based timing attacks with instruction-based scheduling: Extended version. http:

//www.cse.chalmers.se/~buiras/esorics2013_extended.pdf, 2013.

[62] T. Terauchi. A type system for observational determinism. In Proc. of the 2008 21st
IEEE Computer Security Foundations Symposium, pages 287–300. IEEE Computer Society,
2008.

[63] T. C. Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded information flow
in Haskell. In Proc. IEEE Computer Sec. Foundations Symposium, July 2007.

[64] S. Vogl and C. Eckert. Using Hardware Performance Events for Instruction-Level Mon-
itoring on the x86 Architecture. Proceedings of the 2012 European Workshop on System
Security EuroSec’12, 2012.

[65] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. J. Com-
puter Security, 7(2–3), Nov. 1999.

[66] Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based side channel
attacks. In Proc. of the 34th annual international symposium on Computer architecture,
ISCA ’07. ACM, 2007.

[67] V. M. Weaver and S. A. McKee. Can hardware performance counters be trusted? Work-
load Characterization., 08, 2008. http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=4636099.
[68] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security.

In Proc. IEEE Computer Sec. Foundations Workshop, pages 29–43, June 2003.
[69] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of timing channels in inter-

active systems. In Proc. of the 18th ACM CCS. ACM, 2011.
[70] D. Zhang, A. Askarov, and A. C. Myers. Language-based control and mitigation of timing

channels. In Proc. of PLDI. ACM, 2012.

A Formalization of LIO with instruction-based scheduling

LIO is formalized as a simply typed Curry-style call-by-name λ -calculus with some
extensions. Figure 7 defines the formal syntax for the language. Syntactic categories v,
e, and τ represent values, expressions, and types, respectively.

The values in the calculus have their usual meaning for typed λ -calculi. Symbol m
represents LMVars. Special syntax nodes are added to this category: Lb v e, (e)LIO, R m,
and ⊡. Node Lb v e denotes the run-time representation of a labeled value. Similarly,
node (e)LIO denotes the run-time result of a monadic LIO computation. Node ⊡ denotes
the run-time representation of an empty LMVar. Node R m is the run-time representation
of a Result, implemented as a LMVar, that is used to access the result produced by
spawned computations.

Label: l

LMVar: m

Value: v ∶∶= true ∣ false ∣ () ∣ l ∣ m ∣ x ∣ λx.e

∣ fix e ∣ Lb l e ∣ (e)LIO ∣ ⊡ ∣ R m

Expression: e ∶∶= v ∣ ● ∣ e e ∣ if e then e else e

∣ let x = e in e ∣ return e ∣ e >>= e

∣ label e e ∣ unlabel e ∣ getLabel

∣ labelOf e ∣ lFork e e ∣ lWait e

∣ newLMVar e e ∣ takeLMVar e

∣ putLMVar e e ∣ labelOfLMVar e

Type: τ ∶∶= Bool ∣ () ∣ τ → τ ∣ ` ∣ Labeled ` τ

∣ Result ` τ ∣ LMVar ` τ ∣ LIO ` τ

Fig. 7. Syntax for values, expressions, and types.

Expressions are composed of values (v), the special node ●, representing an erased
term, function applications (e e), conditional branches (if e then e else e), and local
definitions (let x = e in e). Additionally, expressions may involve operations related
to monadic computations in the LIO monad. More precisely, return e and e >>= e
represent the monadic return and bind operations. Monadic operations related to the
manipulation of labeled values inside the LIO monad are given by label and unlabel.
Expression unlabel e acquires the content of the labeled value e while in an LIO

computation. Expression label e1 e2 creates a labeled value, with label e1, of the result
obtained by evaluating the LIO computation e2. Expression lFork e1 e2 spawns a thread
that computes e2 and returns a handle with label e1. Expression lWait e inspects the
value returned by the spawned computation whose result is accessed by the handle e.
Creating, reading, and writing labeled MVars are respectively captured by expressions
newLMVar, takeLMVar, and putLMVar.

We consider standard types for Booleans (Bool), unit (()), and function (τ → τ)
values. Type ` describes security labels. Type Result ` τ denotes handles used to access
labeled results produced by spawned computations, where the results are of type τ and
labeled with labels of type `. Type LMVar ` τ describes labeled MVars, with labels of
type ` and storing values of type τ . Type LIO ` τ represents monadic LIO computations,
with a result type τ and the security labels of type `.

As in [60], we consider that each thread has a thread-local runtime environment σ ,
which contains the current label σ .lbl and the current clearance σ .clr. The global
environment Σ , common to every thread, holds the global memory store φ , which is a
mapping from LMVar names to Lb nodes.

The relation jΣ ,⟨σ ,e⟩o γ⇀jΣ ′,⟨σ ′,e′⟩o represents a single execution step from thread
e, under the run-time environments Σ and σ , to thread e′ and run-time environments Σ

′

and σ
′. (This relation does not account for the effects of the cache.) We say that e re-

duces to e′ in one step. Symbol γ ranges over the internal events triggered by threads.
We utilize internal events to communicate between the threads and the scheduler, e.g.,
when spawning new threads.

We show the most relevant rules for
γ⇀ in Figure 8. Rule (LAB) generates a labeled

value if and only if the label is between the current label and clearance of the LIO com-
putation. Rule (UNLAB) requires that, when the content of a labeled value is “retrieved”
and used in a LIO computation, the current label is raised (σ ′ = σ[lbl↦ l′], where
l′ = σ .lbl⊔ l), thus capturing the fact that the remaining computation might depend
on e. Rule (LFORK) allows for the creation of a thread and generates the internal event
fork(e′), where e′ is the computation to spawn. The rule allocates a new LMVar in order
to store the result produced by the spawned thread (e >>= λx.putLMVar m x). Using that
LMVar, the rule provides a handle to access to the thread’s result (return (R m)). Rule
(LWAIT) simply uses the LMVar for the handle. Rule (NLMVAR) describes the creation
of a new LMVar with a label bounded by the current label and clearance (σ .lbl ⊑ l ⊑
σ .clr). Rule (TLMVAR) raises the current label (σ ′ =σ[lbl↦σ .lbl⊔ l]) when emp-
tying (Σ .φ[m↦ Lb l ⊡]) its content (Σ .φ(m) = Lb l e). Similarly, considering the secu-
rity level l of a LMVar, rule (PLMVAR) raises the current label (σ ′ =σ[lbl↦σ .lbl⊔l])
when filling (Σ .φ[m↦ Lb l e]) its content (Σ .φ(m) = Lb l ⊡). Note that both takeLMVar

and putLMVar observe if the LMVar is empty in order to proceed to modify its content.
Precisely, takeLMVar and putLMVar perform a read and a write of the mutable loca-
tion. Operations on LMVar are bi-directional and consequently the rules (TLMVAR),
and (PLMVAR) require not only that the label of the mentioned LMVar be between the
current label and current clearance of the thread (σ .lbl⊑ l ⊑σ .clr), but that the current
label be raised appropriately.

A.1 Cache-aware semantics using instruction-based scheduling

Figure 9 presents cache-aware reduction rules for concurrent execution using instruction-
based scheduling. The configurations for this relation are very similar to the ones for
time-based scheduling in Figure 6 except that we use an instruction budget b rather than
a time quantum q. We write bi for the initial budget for threads.

(LAB)
σ .lbl ⊑ l ⊑ σ .clr

jΣ ,⟨σ ,E[label l e]⟩o Ð→ jΣ ,⟨σ ,E[return (Lb l e)]⟩o

(UNLAB)
l′ = σ .lbl⊔ l l′ ⊑ σ .clr σ

′
= σ[lbl↦ l′]

jΣ ,⟨σ ,E[unlabel (Lb l e)]⟩o Ð→ jΣ ,⟨σ ′,E[return e]⟩o

(LFORK)
σ .lbl ⊑ l ⊑ σ .clr

Σ
′
= Σ[φ ↦ Σ .φ[m↦ Lb l ⊡]] e′ = e >>= λx.putLMVar m x m fresh

jΣ ,⟨σ ,E[lFork l e]⟩o
fork(e′)
Ð→ jΣ

′,⟨σ ,E[return (R m)]⟩o

(LWAIT)
jΣ ,⟨σ ,E[lWait (R m)]⟩o Ð→ jΣ ,⟨σ ,E[takeLMVar m]⟩o

(NLMVAR)
σ .lbl ⊑ l ⊑ σ .clr Σ

′
= Σ[φ ↦ Σ .φ[m↦ Lb l e]] m fresh

jΣ ,⟨σ ,E[newLMVar l e]⟩o Ð→ jΣ
′,⟨σ ,E[return m]⟩o

(TLMVAR)
Σ .φ(m) = Lb l e

e ≠ ⊡ σ .lbl ⊑ l ⊑ σ .clr σ
′
= σ[lbl↦ σ .lbl⊔ l] Σ

′
= Σ[φ ↦ Σ .φ[m↦ Lb l ⊡]]

jΣ ,⟨σ ,E[takeLMVar m]⟩o Ð→ jΣ
′,⟨σ ′,E[return e]⟩o

(PLMVAR)
Σ .φ(m) = Lb l ⊡

σ .lbl ⊑ l ⊑ σ .clr σ
′
= σ[lbl↦ σ .lbl⊔ l] Σ

′
= Σ[φ ↦ Σ .φ[m↦ Lb l e]]

jΣ ,⟨σ ,E[putLMVar m e]⟩o Ð→ jΣ
′,⟨σ ′,E[return ()]⟩o

Fig. 8. Semantics for expressions.

The main difference between these semantics and the time-based ones is the cache-
aware transition rule (STEP-CA). In this rule, the number of cycles k that the current
instruction takes is ignored by the scheduler, counting as one instruction regardless of
the time its execution took.

A.2 Security guarantees

In this section, we show that LIO computations satisfy termination-sensitive non-interference.
As in [59? ?], we prove this property by using the term erasure technique. The era-
sure function εL rewrites data at security levels that the attacker cannot observe into the
syntax node ●.

Listing ?? defines the erasure function εL. This function is defined in such a way that
εL(e) contains no information above level L, i.e., the function εL replaces all the infor-
mation more sensitive than L in e with a hole (●). In most of the cases, the erasure func-

(STEP-CA)
jΣ ,⟨σ ,e⟩oζ Ð→k jΣ

′,⟨σ ′,e′⟩oζ ′ q > 0

jΣ ,ζ ,b,⟨σ ,e⟩ ⊲ tso ↪ jΣ
′,ζ ′,b−1,⟨σ ′,e′⟩ ⊲ tso

(PREEMPT-CA)
q ≤ 0

jΣ ,ζ ,b,t ⊲ tso ↪ jΣ
′,ζ ,bi,ts ⊳ to

(NO-STEP-CA)
jΣ ,toζ Ð→/ t = ⟨σ ,e⟩ e ≠ v

jΣ ,ζ ,b,t ⊲ tso ↪ jΣ ,ζ ,bi,ts ⊳ to

(FORK-CA)

jΣ ,toζ

fork(e)
Ð→ k jΣ

′,⟨σ ,e′⟩oζ ′ tnew = ⟨σ ,e⟩ q > 0

jΣ ,ζ ,b,t ⊲ tso ↪ jΣ
′,ζ ′,b−1,⟨σ ,e′⟩ ⊲ ts ⊳ tnewo

(EXIT-CA)
jΣ ,toζ Ð→k jΣ

′,⟨σ ,v⟩oζ ′ b > 0

jΣ ,ζ ,b,t ⊲ tso ↪ jΣ
′,ζ ′,bi,tso

Fig. 9. Semantics for threadpools under round-robin instruction-based scheduling

tion is simply applied homomorphically (e.g., εL(e1 e2) = εL(e1) εL(e2)). For thread-
pools, the erasure function is mapped into all sequential configurations; all threads with
a current label above L are removed from the pool (filter (λ ⟨σ ,e⟩.e /≡ ●) (map εL ts),
where ≡ denotes syntactic equivalence). The computation performed in a certain se-
quential configuration is erased if the current label is above L. For runtime environments
and stores, we map the erasure function into their components. Similarly, a labeled value
is erased if the label assigned to it is above L.

Following the definition of the erasure function, we introduce a new evaluation re-
lation Ð→L as follows:

jΣ ,⟨σ ,t⟩oζ Ð→k jΣ ′,⟨σ ′,t⟩oζ ′

jΣ ,⟨σ ,t⟩oζ Ð→L εL(jΣ ′,⟨σ ′,t′⟩oζ ′)

The relationÐ→L guarantees that confidential data, i.e., data not below level L, is erased
as soon as it is created. We write Ð→∗L for the reflexive and transitive closure of Ð→L.
Similarly, we introduce a relation↪L as follows:

jΣ ,ζ ,b,tso ↪ jΣ ′,ζ ′,b′,t′so
jΣ ,ζ ,b,tso ↪L εL(jΣ ′,ζ ′,b′,t′so)

As usual, we write↪∗L for the reflexive and transitive closure of ↪L.
In order to prove non-interference, we will establish a simulation relation between

↪∗ and↪∗L through the erasure function: erasing all secret data and then taking evalua-
tion steps in↪L is equivalent to taking steps in↪ first, and then erasing all secret values
in the resulting configuration. Note that this relation would not hold if information from
some level above L was being leaked by the program. In the rest of this section, we only
consider well-typed terms to ensure there are no stuck configurations.

For simplicity, we assume that the space address of the memory store is split into
different security levels and that allocation is deterministic. Therefore, the address re-
turned when creating an LMVar with label l depends only on the LMVars with label l
already in the store.

We start by showing that the evaluation relationsÐ→L and ↪L are deterministic.

Proposition 1 (Determinacy ofÐ→L). If jΣ ,toζ Ð→L jΣ ′,t′oζ ′ and jΣ ,toζ Ð→L jΣ ′′,t′′oζ ′′ ,
then jΣ ′,t′oζ ′ = jΣ ′′,t′′oζ ′′ .

Proof. By induction on expressions and evaluation contexts, showing there is always a
unique redex in every step.

Proposition 2 (Determinacy of↪L). If jΣ ,ζ ,b,tso↪L jΣ ′,ζ ′,b′,t′so and jΣ ,ζ ,b,tso↪L
jΣ ′′,ζ ′′,b′′,t′′s o, then jΣ ′,ζ ′,b′,t′so = jΣ ′′,ζ ′′,b′′,t′′s o.
Proof. By induction on expressions and evaluation contexts, showing there is always a
unique redex in every step and using Lemma 1.

The next lemma establishes a simulation between↪∗ and ↪∗L .

Lemma 1 (Many-step simulation). If jΣ ,ζ ,b,tso↪∗ jΣ ′,ζ ′,b′,t′so, then εL(jΣ ,ζ ,b,tso)↪∗L
εL(jΣ ′,ζ ′,b′,t′so).

Proof. In order to prove this result, we rely on properties of the erasure function, such as
the fact that it is idempotent and homomorphic to the application of evaluation contexts
and substitution. We show that the result holds by case analysis on the rule used to
derive jΣ ,tso↪∗ jΣ ′,t′so, and considering different cases for threads whose current label
is below (or not) level L.

The L-equivalence relation ≈L is an equivalence relation between configurations
(and their parts), defined as the equivalence kernel of the erasure function εL: jΣ ,ζ ,b,tso ≈L
jΣ ′,ζ ′,b′,rso iff εL(jΣ ,ζ ,b,tso) = εL(jΣ ′,ζ ′,b′,rso). If two configurations are L-equivalent,
they agree on all data below or at level L, i.e., they cannot be distinguished by an at-
tacker at level L. Note that two queues are L-equivalent iff the threads with current label
no higher than L are pairwise L-equivalent in the order that they appear in the queue.

The next theorem shows the non-interference property. It essentially states that if
we take two executions of a program with two L-equivalent inputs, then for every in-
termediate step of the computation of the first run, there is a corresponding step in the
computation of the second run which results in an L-equivalent configuration.

Theorem 1 (Termination-sensitive non-interference). Given a computation e (with
no Lb, ()LIO, ⊡, R, and ●) where Γ ⊢ e ∶ Labeled ` τ → LIO ` (Labeled ` τ

′), an
attacker at level L, an initial securiy context σ , runtime environments Σ1 and Σ2 where
Σ1.φ = Σ2.φ = ∅, and initial cache states ζ1 and ζ2, then

∀e1e2.(Γ ⊢ ei ∶ Labeled ` τ)i=1,2∧ e1 ≈L e2
∧ jΣ1,ζ1,bi,⟨σ ,e e1⟩o ↪∗ jΣ ′1,ζ ′1,b′1,t1

s o
⇒ ∃Σ

′

2ζ
′

2b′2t2
s .jΣ2,ζ2,bi,⟨σ ,e e2⟩o ↪∗ jΣ ′2,ζ ′2,b′2,t2

s o∧ jΣ ′1,ζ ′1,b′1,t1
s o ≈L jΣ ′2,ζ ′2,b′2,t2

s o

Proof. Take jΣ1,ζ1,bi,⟨σ ,e e1⟩o↪∗ jΣ ′1,ζ ′1,b′1,t1
s o and apply Lemma 1 to get εL(jΣ1,ζ1,bi,⟨σ ,e e1⟩o)↪∗L

εL(jΣ ′1,ζ ′1,b′1,t1
s o). We know this reduction only includes public (⊑L) steps, so the num-

ber of steps is lower than or equal to the number of steps in the first reduction.
We can always find a reduction starting from εL(jΣ2,ζ2,bi,⟨σ ,e e2⟩o) with the same

number of steps as εL(jΣ1,ζ1,bi,⟨σ ,e e1⟩o) ↪∗L εL(jΣ ′1,ζ ′1,b′1,t1
s o), so by the Determi-

nacy Lemma we have εL(jΣ2,ζ2,bi,⟨σ ,e e2⟩o) ↪∗L εL(jΣ ′2,ζ ′2,b′2,t2
s o). By Lemma 1

again, we get jΣ2,ζ2,bi,⟨σ ,e e2⟩o ↪∗ jΣ ′2,ζ ′2,b′2,t2
s o and therefore jΣ ′1,ζ ′1,b′1,t1

s o ≈L
jΣ ′2,ζ ′2,b′2,t2

s o.

