
A Library for Removing Cache-based Attacks in
Concurrent Information Flow Systems

Pablo Buiras1, Amit Levy2, Deian Stefan2, Alejandro Russo1, and David
Mazières2

1 Chalmers University of Technology
2 Stanford University

Abstract. Information-flow control (IFC) is a security mechanism con-
ceived to allow untrusted code to manipulate sensitive data without
compromising confidentiality. Unfortunately, untrusted code might ex-
ploit some covert channels in order to reveal information. In this paper,
we focus on the LIO concurrent IFC system. By leveraging the effects of
hardware caches (e.g., the CPU cache), LIO is susceptible to attacks that
leak information through the internal timing covert channel. We present
a resumption-based approach to address such attacks. Resumptions pro-
vide fine-grained control over the interleaving of thread computations at
the library level. Specifically, we remove cache-based attacks by enforc-
ing that every thread yield after executing an “instruction,” i.e., atomic
action. Importantly, our library allows for porting the full LIO library—
our resumption approach handles local state and exceptions, both fea-
tures present in LIO. To amend for performance degradations due to the
library-level thread scheduling, we provides two novel primitives. First,
we supply a primitive for securely executing pure code in parallel. Sec-
ond, we provide developers a primitive for controlling the granularity of
“instructions”; this allows developers to adjust the frequency of context
switching to suit application demands.

1 Introduction

Popular website platforms, such as Facebook, run third-party applications (apps)
to enhance the user experience. Unfortunately, in most of today’s platforms,
once an app is installed it is usually granted full or partial access to the user’s
sensitive data—the users have no guarantees that their data is not arbitrarily
ex-filtrated once apps are granted access to it [18]. As demonstrated by Hails [9],
information-flow control (IFC) addresses many of these limitations by restrict-
ing how sensitive data is disseminated. While promising, IFC systems are not
impervious to attacks; the presence of covert channels allows attackers to leak
sensitive information.

Covert channels are mediums not intended for communication, which never-
theless can be used to carry and, thus, reveal information [19]. In this work, we
focus on the internal timing covert channel [33]. This channel emanates from the
mere presence of concurrency and shared resources. A system is said to have an

internal timing covert channel when an attacker, as to reveal sensitive data, can
alter the order of public events by affecting the timing behavior of threads. To
avoid such attacks, several authors propose decoupling computations manipulat-
ing sensitive data from those writing into public resources (e.g., [4, 5, 27, 30, 35]).

Decoupling computations by security levels only works when all shared re-
sources are modeled. Similar to most IFC systems, the concurrent IFC system
LIO [35] only models shared resources at the programming language level and
does not explicitly consider the effects of hardware. As shown in [37], LIO threads
can exploit the underlying CPU cache to leak information through the internal
timing covert channel.

We propose using resumptions to model interleaved computations. (We refer
the interested reader to [10] for an excellent survey of resumptions.) A resump-
tion is either a (computed) value or an atomic action which, when executed,
returns a new resumption. By expressing thread computations as a series of re-
sumptions, we can leverage resumptions for controlling concurrency. Specifically,
we can interleave atomic actions, or “instructions,” from different threads, ef-
fectively forcing each thread to yield at deterministic points. This ensures that
scheduling is not influenced by underlying caches and thus cannot be used to
leak secret data. We address the attacks on the recent version of LIO [35] by im-
plementing a Haskell library which ports the LIO API to use resumptions. Since
LIO threads possess local state and handle exceptions, we extend resumptions
to account for these features.

In principle, it is possible to force deterministic interleaving by means other
than resumptions; in [37] we show an instruction-based scheduler that achieves
this goal. However, Haskell’s monad abstraction allows us to to easily model re-
sumptions as a library. This has two consequences. First, and different from [37],
it allows us to deploy a version of LIO that does not rely on changes to the
Haskell compiler. Importantly, LIO’s concurrency primitives can be modularly
redefined, with little effort, to operate on resumptions. Second, by effectively
implementing “instruction based-scheduling” at the level of library primitives,
we can address cache attacks not covered by the approach described in [37] (see
Section 5).

In practice, a library-level interleaved model of computations imposes perfor-
mance penalties. With this in mind, we provide primitives that allow developers
to execute code in parallel, and means for securely controlling the granularity of
atomic actions (which directly affects performance).

Although our approach addresses internal timing attacks in the presence
of shared hardware, the library suffers from leaks that exploit the termination
channel, i.e., programs can leak information by not terminating. However, this
channel can only be exploited by brute-force attacks that leak data external to
the program—an attacker cannot leak data within the program, as can be done
with the internal timing covert channel.

2 Cache Attacks on Concurrent IFC Systems

Figure 1 shows an attack that leverages the timing effects of the underlying
cache in order to leak information through the internal timing covert channel.
In isolation, all three threads are secure. However, when executed concurrently,
threads B and C race to write to a public, shared variable l. Importantly, the
race outcome depends on the state of the secret variable h, by changing the
contents of underlying CPU cache according to its value (e.g., by creating and
traversing a large array as to fill the cache with new data).

fillCache(highArray)

skip

fillCache(lowArray)

h == 0

Thread A

l := 0

l := 0

l := 1

accessArray(lowArray)

lowArray
in cache?

Thread B Thread C

Fig. 1. Cache attack

The attack proceeds as follows.
First, thread A fills the cache with the
contents of a public array lowArray.
Then, depending on the secret vari-
able h, it evicts data from the cache
(by filling it with arbitrary data) or
leaves it intact. Concurrently, public
threads B and C delay execution long
enough for A to finish. Subsequently,
thread B accesses elements of the pub-
lic array lowArray, and writes 0 to
public variable l; if the array has been
evicted from the cache (h==0), the
amount of time it takes to perform the
read, and thus the write to l, will be
much longer than if the array is still
in the cache. Hence, to leak the value
of h, thread C simply needs to delay
writing 1 to l long enough so that it is
above the case where the cache is full
(with the public array), but shorter
than it take to refill the cache with
the (public) array. Observing the con-
tents of l, the attacker directly learns the value of h.

This simple attack has previously been demonstrated in [37], where con-
fidential data from the GitStar system [9], build atop LIO, was leaked. Such
attacks are not limited to LIO or IFC systems; cache-based attacks against
many system, including cryptographic primitives (e.g., RSA and AES), are well
known [1, 23, 26, 40].

The next section details the use of resumptions in modeling concurrency at
the programming language level by defining atomic steps, which are used as
the thread scheduling quantum unit. By scheduling threads according to the
number of executed atoms, the attack in Figure 1 is eliminated. As in [37], this
is the case because an atomic step runs till completion, regardless of the state of
the cache. Hence, the timing behavior of thread B, which was previously leaked
to thread C by the time of preemption, is no longer disclosed. Specifically, the
scheduling of thread C’s l:=1 does not depend on the time it takes thread B to

data Thread m a where
Done :: a → Thread m a
Atom :: m (Thread m a)→ Thread m a
Fork :: Thread m ()→ Thread m a

→ Thread m a

Fig. 2. Threads as Resumptions

sch :: [Thread m ()]→ m ()
sch [] = return ()
sch ((Done) : thrds) = sch thrds
sch ((Atom m) : thrds) =

do res ← m; sch (thrds ++ [res])
sch ((Fork res res ′) : thrds) =

sch ((res : thrds) ++ [res ′])

Fig. 3. Simple round-robin scheduler

read the public array from the cache; rather it depends on the atomic actions,
which do not depend on the cache state. In addition, our use of resumptions
also eliminates attacks that exploit other timing perturbations produced by the
underlying hardware, e.g., TLB misses, CPU bus contention, etc.

3 Modeling Concurrency with Resumptions

In pure functional languages, computations with side-effects are encoded as val-
ues of abstract data types called monads [22]. We use the type m a to de-
note computations that produce results of type a and may perform side-effects
in monad m. Different side-effects are often handled by different monads. In
Haskell, there are monads for performing inputs and outputs (monad IO), han-
dling errors (monad Error), etc. The IFC system LIO simply exposes a monad,
LIO , in which security checks are performed before any IO side-effecting action.

Resumptions are a simple approach to modeling interleaved computations of
concurrent programs. A resumption, which has the form res ::= x | α . res, is
either a computed value x or an atomic action α followed by a new resumption
res. Using this notion, we can break down a program that is composed of a series
of instructions into a program that executes an atomic action and yields control
to a scheduler by giving it its subsequent resumption. For example, program
P := i1; i2; i3, which performs three side-effecting instructions in sequence, can
be written as resP := i1; i2 . i3 . (), where () is a value of a type with just one
element, known as unit. Here, an atomic action α is any sequence of instructions.
When executing resP , instructions i1 and i2 execute atomically, after which it
yields control back to the scheduler by supplying it the resumption res ′P := i3.().
At this point, the scheduler may schedule atomic actions from other threads
or execute res ′P to resume the execution of P . Suppose program Q := j1; j2,
rewritten as j1 . j2 . (), runs concurrently with P . Our concurrent execution of
P and Q can be modeled with resumptions, under a round-robin scheduler, by
writing it as P ||Q := i1; i2 . j1 . i3 . j2 . (). (). In other words, resumptions allow
us to implement a scheduler that executes i1; i2, postponing the execution of i3,
and executing atomic actions from Q in the interim.

Implementing threads as resumptions As previously done in [10, 11], Fig. 2 de-
fines threads as resumptions at the programming language level. The thread

type (Thread m a) is parametric in the resumption computation value type (a)
and the monad in which atomic actions execute (m)3. (Symbol :: introduces
type declarations and → denotes function types.) The definition has several
value constructors for a thread. Constructor Done captures computed values;
a value Done a represents the computed value a. Constructor Atom captures
a resumption of the form α . res. Specifically, Atom takes a monadic action of
type m (Thread m a), which denotes an atomic computation in monad m that
returns a new resumption as a result. In other words, Atom captures both the
atomic action that is being executed (α) and the subsequent resumption (res).
Finally, constructor Fork captures the action of spawning new threads; value
Fork res res ′ encodes a computation wherein a new thread runs resumption res
and the original thread continues as res ′.4 As in the standard Haskell libraries,
we assume that a fork does not return the new thread’s final value and thus the
type of the new thread/resumption is simply Thread m ().

Programming with resumptions Users do not build programs based on resump-
tions by directly using the constructors of Thread m a. Instead, they use
the interface provided by Haskell monads: return :: a → Thread m a and
(>>=) :: Thread m a → (a → Thread m b) → Thread m b. The expression
return a creates a resumption which consists of the computed value a, i.e., it
corresponds to Done a. The operator (>>=), called bind, is used to sequence
atomic computations. Specifically, the expression res >>= f returns a resumption
that consists of the execution of the atomic actions in res followed by the atomic
actions obtained from applying f to the result produced by res. We sometimes
use Haskell’s do-notation to write such monadic computations. For example, the
expression res>>=(λa → return (a+1)), i.e., actions described by the resumption
res followed by return (a + 1) where a is the result produced by res, is written
as do a ← res; return (a + 1).

Scheduling computations We use round-robin to schedule atomic actions of dif-
ferent threads. Fig. 3 shows our scheduler implemented as a function from a list
of threads into an interleaved computation in the monad m. The scheduler be-
haves as follows. If there is an empty list of resumptions, the scheduler, and thus
the program, terminates. If the resumption at the head of the list is a computed
value (Done), the scheduler removes it and continues scheduling the remaining
threads (sch thrds). (Recall that we are primarily concerned with the side-effects
produced by threads and not about their final values.) When the head of the list
is an atomic step (Atom m), sch runs it (res ← m), takes the resulting resump-
tion (res), and appends it to the end of the thread list (sch (thrds ++ [res])).
Finally, when a thread is forked, i.e., the head of the list is a Fork res res ′, the
spawned resumption is placed at the front of the list (res : thrds). Observe that

3 In our implementation, atomic actions α (as referred as in α . res) are actions
described by the monad m.

4 Spawning threads could also be represented by a equivalent constructor Fork ′ ::
Thread m ()→ Thread m a, we choose Fork for pedagogical reasons.

in both of the latter cases the scheduler is invoked recursively—hence we keep
evaluating the program until there are no more threads to schedule. We note
that although we choose a particular, simple scheduling approach, our results
naturally extend for a wide class of deterministic schedulers [28, 38].

4 Extending Resumptions with State and Exceptions

LIO provides general programming language abstrations (e.g., state and excep-
tions), which our library must preserve to retain expressiveness. To this end,
we extend the notion of resumptions and modify the scheduler to handle thread
local state and exceptions.

sch ((Atom m) : thrds) =
do res ← m

st ← get
sch (thrds ++ [put st � res])

sch ((Fork res res ′) : thrds) =
do st ← get

sch ((res : thrds) ++ [put st � res ′])

Fig. 4. Context-switch of local state

Thread local state As described
in [34], the LIO monad keeps
track of a current label, Lcur.
This label is an upper bound on
the labels of all data in lexical
scope. When a computation C,
with current label LC , observes
an object labeled LO, C’s la-
bel is raised to the least upper
bound or join of the two labels,
written LC tLO. Importantly, the current label governs where the current com-
putation can write, what labels may be used when creating new channels or
threads, etc. For example, after reading an object O, the computation should
not be able to write to a channel K if LO is more confidential than LK—this
would potentially leak sensitive information (about O) into a less sensitive chan-
nel. We write LC v LK when LK at least as confidential as LC and information
is allowed to flow from the computation to the channel.

Using our resumption definition of Section 3, we can model concurrent LIO
programs as values of type Thread LIO . Unfortunately, such programs are overly
restrictive—since LIO threads would be sharing a single current label—and do
not allow for the implementation of many important applications. Instead, and
as done in the concurrent version of LIO [35], we track the state of each thread,
independently, by modifying resumptions, and the scheduler, with the ability to
context-switch threads with state.

Figure 4 shows these changes to sch. The context-switching mechanism relies
on the fact that monad m is a state monad, i.e., provides operations to retrieve
(get) and set (put) its state. LIO is a state monad,5 where the state contains
(among other things) Lcur. Operation (�) :: m b → Thread m a → Thread m a
modifies a resumption in such a way that its first atomic step (Atom) is extended

5 For simplicity of exposition, we use get and set . However, LIO only provides such
functions to trusted code. In fact, the monad LIO is not an instance of MonadState
since this would allow untrusted code to arbitrarily modify the current label—a clear
security violation.

with m b as the first action. Here, Atom consists of executing the atomic step
(res ← m), taking a snapshot of the state (st ← get), and restoring it when
executing the thread again (put st � res). Similarly, the case for Fork saves the
state before creating the child thread and restores it when the parent thread
executes again (put st � res ′).

Exception handling As described in [36], LIO provides a secure way to throw
and catch exceptions—a feature crucial to many real-world applications. Unfor-
tunately, simply using LIO’s throw and catch as atomic actions, as in the case
of local state, results in non-standard behavior. In particular, in the interleaved
computation produced by sch, an atomic action from a thread may throw an
exception that would propagate outside the thread group and crash the program.
Since we do not consider leaks due to termination, this does not impact security;
however, it would have non-standard and restricted semantics. Hence, we first
extend our scheduler to introduce a top-level catch for every spawned thread.

Besides such an extension, our approach still remains quite limiting. Specif-
ically, LIO’s catch is defined at the level of the monad LIO , i.e., it can only
be used inside atomic steps. Therefore, catch-blocks are prevented from being
extended beyond atomic actions. To address this limitation, we lift exception
handling to work at the level of resumptions.

throw e = Atom (LIO .throw e)

catch (Done a) = Done a
catch (Atom a) handler =

Atom (LIO .catch
(do res ← a

return (catch res handler))
(λe → return (handler e)))

catch (Fork res res ′) handler =
Fork res (catch res ′ handler)

Fig. 5. Exception handling for resumptions

To this end, we con-
sider a monad m that
handles exceptions, i.e., a
monad for which throw ::
e → m a and catch ::
m a → (e → m a) →
m a, where e is a type de-
noting exceptions, are ac-
cordingly defined. Func-
tion throw throws the ex-
ception supplied as an ar-
gument. Function catch
runs the action supplied as the first argument (m a), and if an exception is
thrown, then executes the handler (e → m a) with the value of the exception
passed as an argument. If no exceptions are raised, the result of the computation
(of type a) is simply returned.

Figure 5 shows the definition of exception handling for resumptions. Since
LIO defines throw and catch [36], we qualify these underlying functions with LIO
to distinguish them from our resumption-level throw and catch. When throwing
an exception, the resumption simply executes an atomic step that throws the
exception in LIO (LIO .throw e).

The definitions of catch for Done and Fork are self explanatory. The most
interesting case for catch is when the resumption is an Atom. Here, catch applies
LIO .catch step by step to each atomic action in the sequence; this is necessary
because exceptions can only be caught in the LIO monad. As shown in Fig. 5,
if no exception is thrown, we simply return the resumption produced by m.

Conversely, if an exception is raised, LIO .catch will trigger the exception handler
which will return a resumption by applying the top-level handler to the exception
e. To clarify, consider catching an exception in the resumption α1 . α2 . x.
Here, catch executes α1 as the first atomic step, and if no exception is raised, it
executes α2 as the next atomic step; on the other hand, if an exception is raised,
the resumption α2 . x is discarded and catch, instead, executes the resumption
produced when applying the exception handler to the exception.

5 Performance Tuning

Unsurprisingly, interleaving computations at the library-level introduces perfor-
mance degradation. To alleviate this, we provide primitives that allow devel-
opers to control the granularity of atomic steps—fine-grained atoms allow for
more flexible programs, but also lead to more context switches and thus perfor-
mance degradation (as we spend more time context switching). Additionally, we
provide a primitive for the parallel execution of pure code. We describe these
features—which do not affect our security guarantees—below.

Granularity of atomic steps To decrease the frequency of context switches, pro-
grammers can treat a complex set of atoms (which are composed using monadic
bind) as a single atom using singleAtom :: Thread m a → Thread m a. This
function takes a resumption and “compresses” all its atomic steps into one. Al-
though singleAtom may seem unsafe, e.g., because we do not restrict threads
from adjust the granularity of atomic steps according to secrets, in Section 6 we
show that this is not the case—it is the atomic execution of atoms, regardless of
their granularity, that ensures security.

Parallelism As in [37], we cannot run one scheduler sch per core to gain perfor-
mance through parallelism. Threads running in parallel can still race to public
resources, and thus vulnerable to internal timing attacks (that may, for exam-
ple, rely on the L3 CPU cache). In principle, it is possible to securely parallelize
arbitrary side-effecting computations if races (or their outcomes) to shared pub-
lic resource are eliminated. Similar to observational low-determinism [41], our
library could allow parallel computations to compute on disjoint portions of the
memory. However, whenever side-effecting computations follow parallel code, we
would need to impose synchronization barriers to enforce that all side-effects
are performed in a pre-determined order. It is precisely this order, and LIO’s
safe side-effecting primitives for shared-resources, that hides the outcome of any
potential dangerous parallel race. In this paper, we focus on executing pure code
in parallel; we leave side-effecting code to future work.

Pure computations, by definition, cannot introduce races to shared resources
since they do not produce side effects.6 To consider such computations, we simply

6 In the case of Haskell, lazy evaluation may pose a challenge since whether or not a
thunk has been evaluate is indeed an effect on a cache [24]. Though our resumption-
based approach handles this for the single-core case, handling this in general is part
of our ongoing work.

extend the definition of Thread with a new constructor: Parallel::pure b → (b →
Thread m a) → Thread m a. Here, pure is a monad that characterizes pure
expressions, providing the primitive runPure :: pure b → b to obtain the value
denoted by the code given as argument. The monad pure could be instantiated to
Par , a monad that parallelizes pure computations in Haskell [21], with runPure
set to runPar . In a resumption, Parallel p f specifies that p is to be executed
in a separate Haskell thread—potentially running on a different core than the
interleaved computation. Once p produces a value x , f is applied to x to produce
the next resumption to execute.

sch (Parallel p f : thrds) =
do res ← sync (λv → putMVar v (runPure p))

(λv → takeMVar v)
f

sch (thrds ++ [res])

Fig. 6. Scheduler for parallel computations

Figure 6 defines sch
for pure computations,
where interaction between
resumptions and Haskell-
threads gets regulated.
The scheduler relies on
well-established synchro-
nization primitives called
MVars [13]. A value of type MVar is a mutable location that is either empty or
contains a value. Function putMVar fills the MVar with a value if it is empty
and blocks otherwise. Dually, takeMVar empties an MVar if it is full and returns
the value; otherwise it blocks. Our scheduler implementation sch simply takes
the resumption produced by the sync function and schedules it at the end of
the thread pool. Function sync, internally creates a fresh MVar v and spawns
a new Haskell-thread to execute putMVar v (runPure p). This action will store
the result of the parallel computation in the provided MVar. Subsequently, sync
returns the resumption res, whose first atomic action is to read the parallel com-
putation’s result from the MVar (takeMVar v). At the time of reading, if a value
is not yet ready, the atomic action will block the whole interleaved computation.
However, once a value x is produced (in the separate thread), f is applied to it
and the execution proceeds with the produced resumption (f x).

6 Soundness

In this section, we extend the previous formalization of LIO [34] to model the
semantics of our concurrency library. We present the syntax extensions that we
require to model the behavior of the Thread monad:

Expression: e ::= . . . | sch es | Atom e | Done e | Fork e e | Parallel e e

where es is a list of expressions. For brevity, we omit a full presentation of the
syntax and semantics, since we rely on previous results in order to prove the
security property of our approach. The interested reader is referred to [6].

Expressions are the usual λ-calculus expressions with special syntax for mo-
nadic effects and LIO operations. The syntax node sch es denotes the scheduler
running with the list of threads es as its thread pool. The nodes Atom e, Done e,
Fork e e and Parallel e e correspond to the constructors of the Thread data

(Done)

〈Σ, sch (Done x : ts)〉 −→ 〈Σ, sch ts〉

(Atom)

〈Σ,m〉 −→∗ 〈Σ′, (e)LIO〉
〈Σ, sch (Atom (put Σ.lbl>>m) : ts)〉 −→ 〈Σ′, sch (ts ++ [put Σ.lbl � e])〉

(Fork)

〈Σ, sch (Fork m1 m2 : ts)〉 −→ 〈Σ, sch ((m1 : ts) ++ [put Σ.lbl � m2])〉

Fig. 7. Semantics for sch expressions.

(Seq)

〈Σ, e〉 −→ 〈Σ′, e′〉 P ⇒ P ′

〈Σ, e ‖ P 〉 ↪→ 〈Σ′, e′ ‖ P ′〉

(Pure)

P ⇒ P ′ vs fresh MVar s = Σ.lbl

〈Σ, sch (Parallel p f : ts) ‖ P 〉 ↪→
〈Σ, sch (ts ++ [Atom (takeMVar vs >>= f)]) ‖ P ′ ‖ (putMVar vs (runPure p))s〉

(Sync)

P ⇒ P ′

〈Σ, sch (Atom (takeMVar vs >>= f) : ts) ‖ (putMVar vs x)s ‖ P 〉 ↪→
〈Σ, sch (f x : ts) ‖ P ′〉

Fig. 8. Semantics for sch expressions with parallel processes.

type. In what follows, we will use metavariables x,m, p, t, v and f for different
kinds of expressions, namely values, monadic computations, pure computations,
threads, MVars and functions, respectively.

We consider a global environment Σ which contains the current label of
the computation (Σ.lbl), and also represents the resources shared among all
threads, such as mutable references. We start from the one-step reduction re-
lation7 〈Σ, e〉 −→ 〈Σ′, e′〉, which has already been defined for LIO [34]. This
relation represents a single evaluation step from e to e′, with Σ as the initial
environment and Σ′ as the final one. Presented as an extension to the −→ rela-
tion, Figure 7 shows the reduction rules for concurrent execution using sch. The
configurations for this relation are of the form 〈Σ, sch ts〉, where Σ is a runtime
environment and ts is a list of Thread computations. Note that the computation
in an Atom always begins with either put Σ.lbl for some label Σ.lbl, or with
takeMVar v for some MVar v . Rules (Done), (Atom), and (Fork) basically
behave like the corresponding equations in the definition of sch (see Figures 3

7 As in [35], we consider a version of −→ which does not include the operation
toLabeled , since it is susceptible to internal timing attacks.

and 4). In rule (Atom), the syntax node (e)LIO represents an LIO computation
that has produced expression e as its result. Although sch applications should
expand to their definitions, for brevity we show the unfolding of the resulting
expressions into the next recursive call. This unfolding follows from repeated
application of basic λ-calculus reductions.

Figure 8 extends relation −→ into ↪→ to express pure parallel computations.
The configurations for this relation are of the form 〈Σ, sch ts ‖ P 〉, where P is an
abstract process representing a pure computation that is performed in parallel.
These abstract processes would be reified as native Haskell threads. The operator
(‖), representing parallel process composition, is commutative and associative.

As described in the previous section, when a Thread evaluates a Parallel
computation, a new native Haskell thread should be spawned in order to run it.
Rule (Pure) captures this intuition. A fresh MVar vs (where s is the current
label) is used for synchronization between the parent and the spawned thread.
A process is denoted by putMVar vs followed by a pure expression, and it is also
tagged with the security level of the thread that spawned it.

Pure processes are evaluated in parallel with the main threads managed by
sch. The relation ⇒ nondeterministically evaluates one process in a parallel
composition and is defined as follows.

runPure p −→∗ x
(putMVar vs (runPure p))s ‖ P ⇒ (putMVar vs x)s ‖ P

For simplicity, we consider the full evaluation of one process until it yields a value
as just one step, since the computations involved are pure and therefore cannot
leak data. Rule (Seq) in Figure 8 represents steps where no parallel forking or
synchronization is performed, so it executes one −→ step alongside a ⇒ step.

Rule (Sync) models the synchronization barrier technique from Section 5.
When an Atom of the form (takeMVar vs>>=f) is evaluated, execution blocks un-
til the pure process with the corresponding MVar vs completes its computation.
After that, the process is removed and the scheduler resumes execution.

Security guarantees We show that programs written using our library satisfy
termination-insensitive non-interference, i.e., an attacker at level L cannot dis-
tinguish the results of programs that run with indistinguishable inputs . This
result has been previously established for the sequential version of LIO [34]. As
in [20, 31, 34], we prove this property by using the term erasure technique.

In this proof technique, we define function εL in such a way that εL(e) con-
tains only information below or equal to level L, i.e., the function εL replaces
all the information more sensitive than L or incomparable to L in e with a hole
(•). We adapt the previous definition of εL to handle the new constructs in the
library. In most of the cases, the erasure function is simply applied homomorphi-
cally (e.g., εL(e1 e2) = εL(e1) εL(e2)). For sch expressions, the erasure function
is mapped into the list; all threads with a current label above L are removed
from the pool (filter (6≡ •) (map εL ts)), where ≡ denotes syntactic equivalence).
Analogously, erasure for a parallel composition consists of removing all processes

using an MVar tagged with a level not strictly below or equal to L. The compu-
tation performed in a certain Atom is erased if the label is not strictly below or
equal than L. This is given by

εL(Atom (put s >>m)) =

{
• , s 6v L
put s >> εL (m) , otherwise

A similar rule exists for expressions of the form Atom (takeMVar vs >>= f).
Note that this relies on the fact that an atom must be of the form Atom (put s>>
m) or Atom (takeMVar vs >>= f) by construction. For expressions of the form
Parallel p f , erasure behaves homomorphically, i.e. εL(Parallel p f) =
Parallel εL(p) (εL ◦ f).

Following the definition of the erasure function, we introduce the evalua-
tion relation ↪→L as follows: 〈Σ, t ‖ P 〉 ↪→L εL(〈Σ′, t′ ‖ P ′〉) if 〈Σ, t ‖ P 〉 ↪→
〈Σ′, t′ ‖ P ′〉. The relation ↪→L guarantees that confidential data, i.e., data not
below or equal-to level L, is erased as soon as it is created. We write ↪→∗L for the
reflexive and transitive closure of ↪→L.

In order to prove non-interference, we will establish a simulation relation
between ↪→∗ and ↪→∗L through the erasure function: erasing all secret data and
then taking evaluation steps in ↪→L is equivalent to taking steps in ↪→ first, and
then erasing all secret values in the resulting configuration. In the rest of this
section, we consider well-typed terms to avoid stuck configurations.

Proposition 1 (Many-step simulation). If 〈Σ, sch ts ‖ P 〉 ↪→∗
〈Σ′, sch t′s ‖ P ′〉, then it holds that εL(〈Σ, sch ts ‖ P 〉) ↪→∗L εL(〈Σ′, sch t′s ‖ P ′〉).

The L-equivalence relation ≈L is an equivalence relation between configura-
tions and their parts, defined as the equivalence kernel of the erasure function εL:
〈Σ, sch ts ‖ P 〉 ≈L 〈Σ′, sch rs ‖Q〉 iff εL(〈Σ, sch ts ‖ P 〉) = εL(〈Σ′, sch rs ‖Q〉).
If two configurations are L-equivalent, they agree on all data below or at level
L, i.e., an attacker at level L is not able to distinguish them.

The next theorem shows the non-interference property. The configuration
〈Σ, sch []〉 represents a final configuration, where the thread pool is empty and
there are no more threads to run.

Theorem 1 (Termination-insensitive non-interference). Given a compu-
tation e, inputs e1 and e2, an attacker at level L, runtime environments Σ1

and Σ2, then for all inputs e1, e2 such that e1 ≈L e2, if 〈Σ1, sch [e e1]〉 ↪→∗
〈Σ′1, sch []〉 and 〈Σ2, sch [e e2]〉 ↪→∗ 〈Σ′2, sch []〉, then 〈Σ′1, sch []〉 ≈L 〈Σ′2, sch []〉.

This theorem essentially states that if we take two executions from configu-
rations 〈Σ1, sch [e e1]〉 and 〈Σ2, sch [e e2]〉, which are indistinguishable to
an attacker at level L (e1 ≈L e2), then the final configurations for the exe-
cutions 〈Σ′1, sch []〉 and 〈Σ′2, sch []〉 are also indistinguishable to the attacker
(〈Σ′1, sch []〉 ≈L 〈Σ′2, sch []〉). This result generalizes when constructors Done,
Atom, and Fork involve exception handling (see Figure 5). The reason for this
lies in the fact that catch and throw defer all exception handling to LIO .throw
and LIO .catch, which have been proved secure in [36].

7 Case study: Classifying location data

We evaluated the trade-offs between performance, expressiveness and security
through an LIO case study. We implemented an untrusted application that per-
forms K-means clustering on sensitive user location data, in order to classify
GPS-enabled cell phone into locations on a map, e.g., home, work, gym, etc.
Importantly, this app is untrusted yet computes clusters for users without leak-
ing their location (e.g., the fact that Alice frequents the local chapter of the
Rebel Alliance). K-means is a particularly interesting application for evaluating
our scheduler as the classification phase is highly parallelizable—each data point
can be evaluated independently.

We implemented and benchmarked three versions of this app: (i) A baseline
implementation that does not use our scheduler and parallelizes the computa-
tion using Haskell’s Par Monad [21]. Since in this implementation, the scheduler
is not modeled using resumptions, it leverages the parallelism features of Par .
(ii) An implementation in the resumption based scheduler, but pinned to a single
core (therefore not taking advantage of parallelizing pure computations). (iii) A
parallel implementation using the resumption-based scheduler. This implementa-
tion expresses the exact same computation as the first one, but is not vulnerable
to cache-based leaks, even in the face of parallel execution on multiple cores.

We ran each implementation against one month of randomly generated data,
where data points are collected each minute (so, 43200 data points in total).
All experiments were run ten times on a machine with two 4-core (with hy-
perthreading) 2.4Ghz Intel Xeon processors and 48GB of RAM. The secure,
but non-parallel implementation using resumptions performed extremely poorly.
With mean 204.55 seconds (standard deviation 7.19 seconds), it performed over
eight times slower than the baseline at 17.17 seconds (standard deviation 1.16
seconds). This was expected since K-means is highly parallelizable. Conversely,
the parallel implementation in the resumption based scheduler performed more
comparably to the baseline, at 17.83 seconds (standard deviation 1.15 seconds).

To state any conclusive facts on the overhead introduce by our library, it is
necessary to perform a more exhaustive analysis involving more than a single
case study.

8 Related work

Cryptosystems Attacks exploiting the CPU cache have been considered by the
cryptographic community [16]. Our attacker model is weaker than the one typi-
cally considered in cryptosystems, i.e., attackers with access to a stopwatch. As a
countermeasure, several authors propose partitioning the cache (e.g., [25]), which
often requires special hardware. Other countermeasures (e.g. [23]) are mainly
implementation-specific and, while applicable to cryptographic primitives, they
do not easily generalize to arbitrary code (as required in our scenario).

Resumptions While CPS can be used to model concurrency in a functional set-
ting [7], resumptions are often simpler to reason about when considering security

guarantees [10, 11]. The closest related work is that of Harrison and Hook [11];
inspired by a secure multi-level operating system, the authors utilize resump-
tions to model interleaving and layered state monads to represent threads. Every
layer corresponds to an individual thread, thereby providing a notion of local
state. Since we do not require such generality, we simply adapt the scheduler
to context-switch the local state underlying the LIO monad. We believe that
authors overlooked the power of resumptions to deal with timing perturbations
produced by the underlying hardware. In [10], Harrison hints that resumptions
could handle exceptions; in this work, we consummate his claim by describing
precicely how to implement throw and catch.

Language-based IFC There is been considerable amount of literature on applying
programming languages techniques to address the internal timing covert channel
(e.g. [28, 33, 35, 39, 41]). Many of these works assume that the execution of a
single step, i.e., a reduction step in some transition system, is performed in a
single unit of time. This assumption is often made so that security guarantees
can be easily shown using programming language semantics. Unfortunately, the
presence of the CPU cache (or other hardware shared state) breaks this corre-
spondence, making cache attacks viable. Our resumption approach establishes
a correspondence between atomic steps at the implementation-level and reduc-
tion step in a transition system. Previous approaches can leverage this technique
when implementing systems, as to avoid the reappearance of the internal timing
channel.

Agat [2] presents a code transformation for sequential programs such that
both code paths of a branch have the same memory access pattern. This transfor-
mation has been adapted in different works (e.g., [32]). Agat’s approach, how-
ever, focuses on avoiding attacks relying on the data cache, while leaving the
instruction cache unattended.

Russo and Sabelfeld [29] consider non-interference for concurrent while-like-
programs under cooperative and deterministic scheduling. Similar to our work,
this approach eliminates cache-attacks by restricting the use of yields. Differently,
our library targets a richer programming languages, i.e., it supports parallelism,
exceptions, and dynamically adjusting the granularity of atomic actions.

Secure multi-execution [8] preserves confidentiality of data by executing the
same sequential program several times, one for each security level. In this sce-
nario, cache-based attacks can only be removed in specific configurations [14]
(e.g., when there are as many CPU cores as security levels).

Hedin and Sands [12] present a type-system for preventing external timing
attacks for bytecode. Their semantics is augmented to incorporate history, which
enables the modeling of cache effects. Zhang et al. [42] provide a method for
mitigating external events when their timing behavior could be affected by the
underlying hardware. Their semantics focusses on sequential programs, wherein
attacks due to the cache arise in the form of externally visible events. Their
solution is directly applicable to our system when considering external events.

System security In order to achieve strong isolation, Barthe et al. [3] present a
model of virtualization which flushes the cache upon switching between guest
operating systems. Flushing the cache in such scenarios is common and does
not impact the already-costly context-switch. Although this technique addresses
attacks that leverage the CPU cache, it does not address the case where a shared
resource cannot be controlled (e.g., CPU bus).

Allowing some information leakage, Kopft et al. [17] combines abstract inter-
pretation and quantitative information-flow to analyze leakage bounds for cache
attacks. Kim et al. [15] propose StealthMem, a system level protection against
cache attacks. StealthMem allows programs to allocate memory that does not
get evicted from the cache. StealthMem is capable of enforcing confidentiality for
a stronger attacker model than ours, i.e., they consider programs with access to a
stopwatch and running on multiple cores. However, we suspect that StealthMem
is not adequate for scenarios with arbitrarily complex security lattices, wherein
not flushing the cache would be overly restricting.

9 Conclusion

We present a library for LIO that leverages resumptions to expose concurrency.
Our resumption-based approach and “instruction”- or atom-based scheduling
removes internal timing leaks induced by timing perturbations of the underly-
ing hardware. We extend the notion of resumptions to support state and excep-
tions and provide a scheduler that context-switches programs with such features.
Though our approach eliminates internal-timing attacks that leverage hardware
caches, library-level threading imposes considerable performance penalties. Ad-
dressing this, we provide programmers with a safe mean for controlling the
context-switching frequency, i.e., allowing for the adjustment of the “size” of
atomic actions. Moreover, we provide a primitive for spawning computations in
parallel, a novel feature not previously available in IFC tools. We prove sound-
ness of our approach and implement a simple case study to demonstrate its use.
Our techniques can be adapted to other Haskell-like IFC systems beyond LIO.
The library, case study, and details of the proofs can be found at [6].

Acknowledgments We would like to thank Josef Svenningsson and our colleagues in

the ProSec and Functional Programming group at Chalmers for useful comments. This

work was supported by the Swedish research agency VR, STINT, the Barbro Osher

foundation, DARPA CRASH under contract #N66001-10-2-4088, and multiple gifts

from Google. Deian Stefan is supported by the DoD through the NDSEG Fellowship

Program.

Bibliography

[1] O. Aciiçmez. Yet another microarchitectural attack:: exploiting I-cache. In Pro-
ceedings of the 2007 ACM workshop on Computer security architecture, CSAW
’07. ACM, 2007.

[2] J. Agat. Transforming out timing leaks. In Proc. ACM Symp. on Principles of
Prog. Languages, pages 40–53, Jan. 2000.

[3] G. Barthe, G. Betarte, J. Campo, and C. Luna. Cache-leakage resilient OS isola-
tion in an idealized model of virtualization. In Proc. IEEE Computer Sec. Foun-
dations Symposium. IEEE Computer Society, june 2012.

[4] Boudol and Castellani. Noninterference for concurrent programs. In Proc.
ICALP’01, volume 2076 of LNCS. Springer-Verlag, July 2001.

[5] G. Boudol and I. Castellani. Non-interference for concurrent programs and thread
systems. Theoretical Computer Science, 281(1), June 2002.

[6] P. Buiras, A. Levy, D. Stefan, A. Russo, and D. Mazières. A library for removing
cache-based attacks in concurrent information flow systems: Extended version.
http://www.cse.chalmers.se/~buiras/resLIO.html, 2013.

[7] K. Claessen. A poor man’s concurrency monad. J. Funct. Program., May 1999.
[8] D. Devriese and F. Piessens. Noninterference through secure multi-execution.

In Proc. of the 2010 IEEE Symposium on Security and Privacy, SP ’10. IEEE
Computer Society, 2010.

[9] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. Mitchell, and A. Russo.
Hails: Protecting data privacy in untrusted web applications. In Proc. of the 10th
Symposium on Operating Systems Design and Implementation, October 2012.

[10] B. Harrison. Cheap (but functional) threads. J. of Functional Programming, 2004.
[11] W. L. Harrison and J. Hook. Achieving information flow security through precise

control of effects. In Proc. IEEE Computer Sec. Foundations Workshop. IEEE
Computer Society, 2005.

[12] D. Hedin and D. Sands. Timing aware information flow security for a JavaCard-
like bytecode. Elec. Notes Theor. Comput. Sci., 141, 2005.

[13] S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1996.

[14] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-
sensitive secure information flow: Exploring a new approach. In Proc. of IEEE
Symposium on Sec. and Privacy. IEEE, 2011.

[15] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM: system-level protec-
tion against cache-based side channel attacks in the cloud. In Proc. of the USENIX
Conference on Security Symposium, Security’12. USENIX Association, 2012.

[16] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Proc. of the 16th CRYPTO. Springer-Verlag, 1996.

[17] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic quantification of cache side-
channels. In Proceedings of the 24th international conference on Computer Aided
Verification, CAV’12. Springer-Verlag, 2012.

[18] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A World Wide Web
Without Walls. In 6th ACM Workshop on Hot Topics in Networking (Hotnets),
Atlanta, GA, November 2007.

[19] B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, 1973.

[20] P. Li and S. Zdancewic. Arrows for secure information flow. Theoretical Computer
Science, 411(19):1974–1994, 2010.

[21] S. Marlow, R. Newton, and S. L. P. Jones. A monad for deterministic parallelism.
In Proc. ACM SIGPLAN Symposium on Haskell, 2011.

[22] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[23] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the
case of AES. In Proceedings of the 2006 The Cryptographers’ Track at the RSA
conference on Topics in Cryptology, CT-RSA’06. Springer-Verlag, 2006.

[24] B. Pablo and A. Russo. Lazy programs leak secrets. In the Pre-proceedings of the
18th Nordic Conference on Secure IT Systems (NordSec), October 2013.

[25] D. Page. Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptology ePrint Archive, 2005, 2005.

[26] C. Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005, 2005.
[27] F. Pottier. A simple view of type-secure information flow in the π-calculus. In In

Proc. of the 15th IEEE Computer Security Foundations Workshop, 2002.
[28] A. Russo and A. Sabelfeld. Securing interaction between threads and the sched-

uler. In Proc. IEEE Computer Sec. Foundations Workshop, July 2006.
[29] A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative

scheduling. In Proc. Andrei Ershov International Conference on Perspectives of
System Informatics (PSI), LNCS. Springer-Verlag, June 2006.

[30] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing
channels by transformation. In Proc. of Asian Computing Science Conference,
LNCS. Springer-Verlag, Dec. 2006.

[31] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow
security in Haskell. In Proc. ACM SIGPLAN Symposium on Haskell, pages 13–24.
ACM Press, Sept. 2008.

[32] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. IEEE Computer Sec. Foundations Workshop, July 2000.

[33] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative
language. In Proc. ACM Symp. on Principles of Prog. Languages, Jan. 1998.

[34] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information
flow control in Haskell. In Haskell Symposium. ACM SIGPLAN, September 2011.

[35] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières. Ad-
dressing covert termination and timing channels in concurrent information flow
systems. In The 17th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 201–213. ACM, September 2012.

[36] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information
flow control in the presence of exceptions. Arxiv preprint arXiv:1207.1457, 2012.

[37] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières.
Eliminating cache-based timing attacks with instruction-based scheduling. In
Proc. European Symp. on Research in Computer Security, 2013.

[38] W. Swierstra. A Functional Specification of Effects. PhD thesis, University of
Nottingham, November 2008.

[39] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
J. Computer Security, 7(2–3), Nov. 1999.

[40] W. H. Wong. Timing attacks on RSA: revealing your secrets through the fourth
dimension. Crossroads, 11, May 2005.

[41] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program
security. In Proc. IEEE Computer Sec. Foundations Workshop, June 2003.

[42] D. Zhang, A. Askarov, and A. C. Myers. Language-based control and mitigation
of timing channels. In Proc. of PLDI. ACM, 2012.

