The Case for Building a Kernel
in Rust

Amit Levy! Brad Campbell! Branden Ghenat
Pat Pannuto® Philip Levis' Prabal Duttat

Stanford University? & University of Michigan®

September 2nd 2017

Memory and type safety

bugs plague systems

Name
CVE-2017-9996

CVE-2017-9995

CVE-2017-9994

CVE-2017-9992

CVE-2017-9991

CVE-2017-9990

CVE-2017-9987

Description

The cdxl_decode_frame function in libavcodec/cdxl.c in FFmpeg 2.8.x before 2.8.12, 3.0.x before
3.0.8, 3.1.x before 3.1.8, 3.2.x before 3.2.5, and 3.3.x before 3.3.1 does not exclude the CHUNKY
format, which allows remote attackers to cause a denial of service (heap-based buffer overflow and
application crash) or possibly have unspecified other impact via a crafted file.

libavcodec/scpr.c in FFmpeg 3.3 before 3.3.1 does not properly validate height and width data, which
allows remote attackers to cause a denial of service (heap-based buffer overflow and application
crash) or possibly have unspecified other impact via a crafted file.

libavcodec/webp.c in FFmpeg before 2.8.12, 3.0.x before 3.0.8, 3.1.x before 3.1.8, 3.2.x before
3.2.5, and 3.3.x before 3.3.1 does not ensure that pix_fmt is set, which allows remote attackers to
cause a denial of service (heap-based buffer overflow and application crash) or possibly have
unspecified other impact via a crafted file, related to the vp8_decode_mb_row_no_filter and
pred8x8_128_dc_8_c functions.

Heap-based buffer overflow in the decode_dds1 function in libavcodec/dfa.c in FFmpeg before 2.8.12,
3.0.x before 3.0.8, 3.1.x before 3.1.8, 3.2.x before 3.2.5, and 3.3.x before 3.3.1 allows remote
attackers to cause a denial of service (application crash) or possibly have unspecified other impact
via a crafted file.

Heap-based buffer overflow in the xwd_decode_frame function in libavcodec/xwddec.c in FFmpeg
before 2.8.12, 3.0.x before 3.0.8, 3.1.x before 3.1.8, 3.2.x before 3.2.5, and 3.3.x before 3.3.1
allows remote attackers to cause a denial of service (application crash) or possibly have unspecified
other impact via a crafted file.

Stack-based buffer overflow in the color_string_to_rgba function in libavcodec/xpmdec.c in FFmpeg
3.3 before 3.3.1 allows remote attackers to cause a denial of service (application crash) or possibly
have unspecified other impact via a crafted file.

There is a heap-based buffer overflow in the function hpel_motion in mpegvideo_motion.c in libav
12.1. A crafted input can lead to a remote denial of service attack.

Name
CVE-2017-9762

CVE-2017-9612

CVE-2017-9527

CVE-2017-9520

CVE-2017-9182

CVE-2017-8929

CVE-2017-8895

CVE-2017-8846

CVE-2017-8359

CVE-2017-8270

CVE-2017-8266

CVE-2017-7946

Description

The cmd_info function in libr/core/cmd_info.c in radare2 1.
(use-after-free and application crash) via a crafted binary fil

0 allows remote attackers to cause a denial of service

The Ins_IP function in base/ttinterp.c in Artifex Ghostscript GhostXPS 9.21 allows remote attackers to cause a denial of
service (use-after-free and application crash) or possibly have unspecified other impact via a crafted document.

The mark_context_stack function in gc.c in mruby through 1.2.0 allows attackers to cause a denial of service (heap-
based use-after-free and application crash) or possibly have unspecified other impact via a crafted .rb file.

The r_config_set function in libr/config/config.c in radare2 1.5.0 allows remote attackers to cause a denial of service
(use-after-free and application crash) via a crafted DEX file.

libautotrace.a in AutoTrace 0.31.1 allows remote attackers to cause a denial of service (use-after-free and invalid heap
read), related to the GET_COLOR function in color.c:16:11.

The sized_string_cmp function in libyara/sizedstr.c in YARA 3.5.0 allows remote attackers to cause a denial of service
(use-after-free and application crash) via a crafted rule.

In Veritas Backup Exec 2014 before build 14.1.1187.1126, 15 before build 14.2.1180.3160, and 16 before FP1, there is
a use-after-free vulnerability in multiple agents that can lead to a denial of service or remote code execution. An
authenticated attacker can use this vulnerability to crash the agent or potentially take control of the agent process and
then the system it is running on.

The read_stream function in stream.c in liblrzip.so in Irzip 0.631 allows remote attackers to cause a denial of service
(use-after-free and application crash) via a crafted archive.

Google gRPC before 2017-03-29 has an out-of-bounds write caused by a heap-based use-after-free related to the
grpe_call_destroy function in core/lib/surface/call.c.

In all Qualcomm products with Android releases from CAF using the Linux kernel, a race condition exists in a driver
potentially leading to a use-after-free condition.

In all Qualcomm products with Android releases from CAF using the Linux kernel, a race condition exists in a video
driver potentially leading to a use-after-free condition.

The get_relocs_64 function in libr/bin/format/mach0/mach0.c in radare2 1.3.0 allows remote attackers to cause a

Reported by higonggu...@gm: pr 13 2016

type confusion lead to information leak in decodeURI -

VULNERABILITY DETAILS

the value passed to function TwoByteSeqStringSetChar maybe not a smi but a HeapObject,

simply casting a point to HeapObject to a smi lead to information leak.

void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();

DCHECK_EQ(3, args->length());

Register string = rax;
Register index = rbx;
Register value = rcx;

VisitForStackValue(args->at(@)); // index
VisitForStackValue(args->at (1)) // value------> maybe point of heap object,
i guess

VisitForAccumulatorValue(args->at(2));
PopOperand (value) ;
PopOperand (index) ;

// string

VULNERABILITY DETAILS
the value passed to function TwoByteSeqStringSetChar maybe not a smi but a HeapObject,

[

DCHECK_EQ(3, args->length());

Register string = rax;
Register index = rbx;
Register value = rcx;

VisitForStackValue(args->at(0)); /r
VisitForStackValue(args->at(1)); /7
qguess

VisitForAccumulatorValue(args->at(2)); //

PopOperand (value) ;
PopOperand (index) ;

simply casting a point to HeapObject to a smi lead to information leak.
void FullCodeGenerator::EmitTwoByteSeqString!
ZoneList<Expression*>* args = expr->argumel

MsMpEng: Remotely Exploitable Type Confusion in Windo
10, Windows Server, SCEP, Microsoft Security Essentials, a

Project Member Reported by taviso@google.com, May 6

MsMpEng is the Malware Protection service that |Description #5 (tavisog

is enabled by default on Windows 8, 8.1, 10

Windows Server 2012, and so on. Additionally, Microsoft Security Es
Endpoint Protection and various other Microsoft security products s
engine. MsMpEng runs as NT AUTHORITY\SYSTEM without sandboxing, and
without authentication via various Windows services, including Exch

On workstations, attackers can access mpengine by sending emails to
or opening attachments is not necessary), visiting links in a web b
and so on. This level of accessibility is possible because MsMpEng |
minifilter to intercept and inspect all system filesystem activity,
contents to anywhere on disk (e.g. caches, temporary internet files
unconfirmed downloads), attachments, etc) is enough to access funct
MIME types and file extensions are not relevant to this vulnerabili
own content identification system.

Vulnerabilities in MsMpEng are among the most severe possible in Wil
privilege, accessibility, and ubiquity of the service.

The core component of MsMpEng responsible for scanning and analysis
Mpengine is a vast and complex attack surface, comprising of handle
archive formats, executable packers and cryptors, full system emula

Security: type confusion lead to information leak in decodeURI
Reported by higonggu...@gmail.com, Apr 13 2016 B

VULNERABILITY DETAILS
the value passed to function TwoByteSeqStringSetChar maybe not a smi but a HeapObject,
simply casting a point to HeapObject to a smi lead to information leak.

BRG] MsMpEng: Remotely Exploitable Type Confusion in Windo

DCHECK_EQ(3, args->length()); 10, Windows Server, SCEP, Microsoft Security Essentials, a

Register string = rax; Project Member Reported by taviso@google.com, May 6

Register index = rbx;

Register value = rcx; MsMpEng is the Malware Protlection service that Description #5 (taviso(

VisitForStackvalue(args->at(6)); 47 1is enabled by default on Windows 8, 8.1, 10, .)

VisitForStackValue(args->at(1)); ¢/ Windows Server 2012, and so on. Additionally, Microsoft Security Es
i guess Endpoint Protection and various other Microsoft security products sl

VisitForAccumulatorValue(args->at(2)); // engine. MsMpEng runs as NT AUTHORITY\SYSTEM without sandboxing, and

PopOperand (value) ; without authentication via various Windows services, including Exch
PopOperand (index) ;

On workstations, attackers can access mpengine by sending emails to

or opening attachments is not necessary), visiting links in a web b

and so on. This level of accessibility is possible because MsMpEng |

e e e e e T T T L e e o gL system filesystem activity,

. " es, temporary internet files

Project Member| Reported by ifratric@google.com, Nov 25 2016) is enough to access funct

relevant to this vulnerabili

PoC:
<!-- saved from url=(0014)about:internet --> . . A
<style> he most severe possible in Wi
.classl { float: left; column-count: 5; } of the service.

.class? { column-span? all; columns: 1px; }
table {border-spacing: 8px;}

</style> ble for scanning and analysis

<scripts surface, comprising of handle

function boom{) { . d cryptors, full system emula
document.styleSheets[@].media.mediaText = "aaaaaaaaaaaaaaaaaaaa”; . a7 .

thl.align = "right";

1

</scripts

<body onload="setInterval(boom, 100)">

<table cellspacing="0">

<tr class="classl">

<th id="th1" colspan="5" width=0></th>

<th class="class2" width=B><div class="class2"s</divs</th>

Hote: The analysis below is based on an 64-bit IE (running in single process mode) running on Windows Serv
Symbol Server has been down for several days and that's the only configuration for which T had up-to-date
Edge and 32-bit IE 11 should behave similarly.

The PoC crashes in

Long history of research D

= “Bugfinding”

* Fuzz-ing (1990)
= DART (2005)
= KLEE (2008)
= KINT (2012)

= Type-Safe Kernels:

= Cedar (1986)
* Spin (1995)
* Singularity (2007)

Why are we still

building systemsinC?

Type safety (typically) isn’t free @

Type safety usually requires garbage collection.

= Give up control over memory layout and location
= Large trusted runtime
= Either a performance hit or large memory overhead

Type safety (typically) isn’t free @

Type safety usually requires garbage collection.

= Give up control over memory layout and location
= Large trusted runtime
= Either a performance hit or large memory overhead

Can we use type safety without allowing it to dictate how we design
systems?

ok e

“Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees thread
safety.”

-https://www.rust-lang.org

A 5-minute Introduction to Rust
Limitations imposed by Rust
Addressing the limitations
Case-Study: Tock OS
Conclusion & future work

https://www.rust-lang.org

A Systems Builder’s

Guide to Rust (abridged)

Rust Features

Type and memory safe

Statically enforced type system

Compiles with the LLVM toolchain to machine code
C calling convention

Explicit memory location and layout
No language runtime

Ownership D

Key Property

When the owner goes out of scope, we can deallocate memory for
the value.

Ownership D

Key Property

When the owner goes out of scope, we can deallocate memory for
the value.

Memory for the value Foo: : new() is allocated and bound to the
variable x.

{

let x = Foo::new()

}

When the scope exits, x is no longer valid and the memory is “freed”

Ownership

This is an error:

{
let x = Foo::new();
let y = x;
// x not valid here
}

because Foo: :new() has been moved from x to y, so x is no longer
valid.

Borrows

fn bar(x: &mut Foo) {
// the borrow is implicitly released.

}

let mut x = Foo::new();
bar(&mut x);
// x still valid here

Borrows

fn bar(x: &mut Foo) {
// the borrow is implicitly released.

3

let mut x = Foo::new();
bar(&mut x);

// x still valid here

Just a pointer at runtime

Borrows

fn bar(x: &mut Foo) {
// the borrow is implicitly released.

3

let mut x = Foo::new();
bar(&mut x);

// x still valid here

Just a pointer at runtime

= Mutable references (&mut) must be unique
= Shared references (&) cannot mutate the value

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)
}

enum NumOrPointer { // n.b. will not compile
Num(u32), let external : &mut NumOrPointer;
Pointer(&mut u32) if let Pointer(internal) = external {

b

enum NumOrPointer { // n.b. will not compile
Num(u32), let external : &mut NumOrPointer;
Pointer(&mut u32) if let Pointer(internal) = external {

b

*external = Num(0xdeadbeef);

enum NumOrPointer {

b

Num(u32),
Pointer(&mut u32)

// n.b. will not compile
let external : &mut NumOrPointer;
if let Pointer(internal) = external {

*external = Num(0xdeadbeef);

*internal = 12345;
// Kaboom: we’ve just written ¢12345¢
// to the address ‘0Oxdeadbeef

enum NumOrPointer { // n.b. will not compile
Num(u32), let external : &mut NumOrPointer;
Pointer(&mut u32) if let Pointer(internal) = external {

b

*external = Num(0xdeadbeef);

*internal 12345;
// Kaboom: we’ve just written ¢12345¢
// to the address ‘0Oxdeadbeef

$ rustc test.rs
error[EQ506]: cannot assign to ‘external®
because it is borrowed

Rustimposed limitations

Process

_____ T f-----
System Call

[|

Rand. Pool

RNG

[|

hardware

pub struct SysCallDispatcher { Process
processes: Vec<Process>,

pool: &mut RandomPool, ~ —— fo-cge-oo-
. System Call

}

pub struct RandomPool {
busy: bool, Rand. Pool
pool: Queue<u32>, T l
rng: &mut RNG,
syscall: &mut SysCallDispatcher, RNG

pub struct RNG {
hw_registers: [usize; 161, hardware
client: &mut RandomPool,

b

Process

let syscall: SysCallDispatcher;

let pool: RandomPool; —— S
let rng: RNG; System Call
syscalls.pool = &mut poo; T l
pool.syscall = &mut syscall;

pool.rng = &mut rng; Rand. Pool

rng.client = &mut pool;

RNG

hardware

System Call

Rand. Pool

RNG

Interior mutability @

It’s actually safe to have mutable aliases in many cases.

The key is avoiding mutability and aliasing simultaneously.

Interior mutability

It’s actually safe to have mutable aliases in many cases.
The key is avoiding mutability and aliasing simultaneously.

Rust has container types with “interior mutability”. Shared
references to these types allow mutation, give certain restrictions:
= Cell: Only copy-in/out or replace, no references to
internal value

= Mutex: Gives internal references through
mutual-exclusion

= TakeCell: Only operates if not already being used

pub struct SysCallDispatcher { Process
processes: TakeCell<Vec<Process>>,

pool: &RandomPool, —— fo-cf-----
. System Call

}

pub struct RandomPool {
busy: Cell<bool>, Rand. Pool
pool: TakeCell<Queue<u32>>, T l
rng: &RNG,
syscall: &SysCallDispatcher, RNG

pub struct RNG {
hw_registers: TakeCell<[usize; 161>, hardware
client: &RandomPool,

b

Process

let syscall: SysCallDispatcher;

let pool: RandomPool; —— S
let rng: RNG; System Call
syscalls.pool = &poo; T l
pool.syscall = &syscall;

pool.rng = &rng; Rand. Pool

rng.client = &pool;

RNG

hardware

Case study: Tock OS

Tock Overview

= Security focused embedded operating system

Tock Overview

= Security focused embedded operating system

= Kernel components are mostly untrusted

Tock Overview

= Security focused embedded operating system
= Kernel components are mostly untrusted

= Targets microcontrollers with <64kB RAM

Processes

Kernel

Microcontroller

Peripherals

= Kernel written in ~26695 lines of Rust

Processes

Kernel

Microcontroller

Peripherals

= Kernel written in ~26695 lines of Rust

Example: DMA

struct DMAChannel {

enabled: Cell<bool>,
buffer: TakeCell<&’static mut [u8]>,
}

Examples: USB D

enum EpCtl { struct InEndpoint {
o control: Cell<EpCtl>,
Enable = 1 << 31, dma_address:
ClearNak = 1 << 26, Cell<&’static DMADescriptor>,
Stall = 1 << 21 .
} }

struct USBRegisters {

in_endpoints: Cell<&[InEndpoint; 161>,
}

Minimal TCB

Trusted Kernel components (~3600 LoC)

= Board configuration: 806 LoC
= Process scheduler: 1784 LoC
= Hardware interface: ~1000 LoC

Rust core library

= String,slice
= Floating point
= Compilerintrinsics (e.g. memcpy)

Conclusion

Type Safety Belongs Everywhere ()

= Type safety critical tool for
building secure systems.

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for
building secure systems.

= Key question: What is the
lowest level of control
needed?

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for
building secure systems.

= Key question: What is the
lowest level of control
needed?

= Rustis an existence proof
we can use today

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for = We still need useful
building secure systems. performance metrics

= Key question: What is the
lowest level of control
needed?

= Rustis an existence proof
we can use today

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for = We still need useful
building secure systems. performance metrics

= Key question: What is the = Should experiment with
lowest level of control other system types
needed?

= Rustis an existence proof
we can use today

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for = We still need useful
building secure systems. performance metrics

= Key question: What is the = Should experiment with
lowest level of control other system types
needed?

= Can we providerich
= Rustis an existence proof security primitives like
we can use today DIFC?

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for = We still need useful
building secure systems. performance metrics

= Key question: What is the = Should experiment with
lowest level of control other system types
needed?

= Can we providerich
= Rustis an existence proof security primitives like
we can use today DIFC?

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere ()

= Type safety critical tool for = We still need useful
building secure systems. performance metrics

= Key question: What is the = Should experiment with
lowest level of control other system types
needed?

= Can we providerich

= Rustis an existence proof security primitives like

we can use today DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

struct App {

pub

count: u32,

tx_callback: Callback,

rx_callback: Callback,

app_read: Option<AppSlice<Shared, u8>>,
app_write: Option<AppSlice<Shared, u8>>,

struct Driver {
app: TakeCell<App>,

driver.app.map(lapp]| {

1)

app.count = app.count + 1

/* Load App address into r1, replace with null */
ldr ri, [ro, 0]

movs r2, o

str r2, [ro, 0]

/* If TakeCell is empty (null) return */

cmp rt, o

it eq

bx 1r

/* Non-null: increment count */
1dr r2, [r1, 0]

add r2, r2, 1

str r2, [r1, 0]

/* Store App back to TakeCell =*/
str ri, [ro, 0]

bx 1r

	Memory and type safety bugs plague systems
	Why are we still building systems in C?
	A Systems Builder's Guide to Rust (abridged)
	Rust imposed limitations
	Case study: Tock OS
	Conclusion

