
The Case for Building a Kernel
in Rust

Amit Levy† Brad Campbell‡ Branden Ghena‡

Pat Pannuto‡ Philip Levis† Prabal Dutta‡

Stanford University† & University of Michigan‡

September 2nd 2017

Memoryand type safety
bugsplague systems

Long history of research

“Bug finding”
Fuzz-ing (1990)
DART (2005)
KLEE (2008)
KINT (2012)

Type-Safe Kernels:
Cedar (1986)
Spin (1995)
Singularity (2007)

Whyarewestill
building systems inC?

Type safety (typically) isn’t free

Type safety usually requires garbage collection.

Give up control over memory layout and location
Large trusted runtime
Either a performance hit or large memory overhead

Can we use type safety without allowing it to dictate howwe design
systems?

Type safety (typically) isn’t free

Type safety usually requires garbage collection.

Give up control over memory layout and location
Large trusted runtime
Either a performance hit or large memory overhead

Can we use type safety without allowing it to dictate howwe design
systems?

“Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees thread
safety.”

-https://www.rust-lang.org

1. A 5-minute Introduction to Rust
2. Limitations imposed by Rust
3. Addressing the limitations
4. Case-Study: Tock OS
5. Conclusion & future work

https://www.rust-lang.org

ASystemsBuilder’s
Guide toRust (abridged)

Rust Features

Type andmemory safe
Statically enforced type system
Compiles with the LLVM toolchain to machine code
C calling convention
Explicit memory location and layout
No language runtime

Ownership
Key Property

When the owner goes out of scope, we can deallocate memory for
the value.

Memory for the value Foo::new() is allocated and bound to the
variable x.

{
let x = Foo::new()

}

When the scope exits, x is no longer valid and thememory is “freed”

Ownership
Key Property

When the owner goes out of scope, we can deallocate memory for
the value.

Memory for the value Foo::new() is allocated and bound to the
variable x.

{
let x = Foo::new()

}

When the scope exits, x is no longer valid and thememory is “freed”

Ownership

This is an error:

{
let x = Foo::new();
let y = x;
// x not valid here

}

because Foo::new() has beenmoved from x to y, so x is no longer
valid.

Borrows

fn bar(x: &mut Foo) {
// the borrow is implicitly released.

}

let mut x = Foo::new();
bar(&mut x);
// x still valid here

Just a pointer at runtime

Mutable references (&mut) must be unique
Shared references (&) cannot mutate the value

Borrows

fn bar(x: &mut Foo) {
// the borrow is implicitly released.

}

let mut x = Foo::new();
bar(&mut x);
// x still valid here

Just a pointer at runtime

Mutable references (&mut) must be unique
Shared references (&) cannot mutate the value

Borrows

fn bar(x: &mut Foo) {
// the borrow is implicitly released.

}

let mut x = Foo::new();
bar(&mut x);
// x still valid here

Just a pointer at runtime

Mutable references (&mut) must be unique
Shared references (&) cannot mutate the value

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)

}

// n.b. will not compile
let external : &mut NumOrPointer;
if let Pointer(internal) = external {

*external = Num(0xdeadbeef);

*internal = 12345;
// Kaboom: we’ve just written ‘12345‘
// to the address ‘0xdeadbeef‘

}

$ rustc test.rs
error[E0506]: cannot assign to ‘external‘

because it is borrowed

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)

}

// n.b. will not compile
let external : &mut NumOrPointer;
if let Pointer(internal) = external {

*external = Num(0xdeadbeef);

*internal = 12345;
// Kaboom: we’ve just written ‘12345‘
// to the address ‘0xdeadbeef‘

}

$ rustc test.rs
error[E0506]: cannot assign to ‘external‘

because it is borrowed

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)

}

// n.b. will not compile
let external : &mut NumOrPointer;
if let Pointer(internal) = external {

*external = Num(0xdeadbeef);

*internal = 12345;
// Kaboom: we’ve just written ‘12345‘
// to the address ‘0xdeadbeef‘

}

$ rustc test.rs
error[E0506]: cannot assign to ‘external‘

because it is borrowed

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)

}

// n.b. will not compile
let external : &mut NumOrPointer;
if let Pointer(internal) = external {

*external = Num(0xdeadbeef);

*internal = 12345;
// Kaboom: we’ve just written ‘12345‘
// to the address ‘0xdeadbeef‘

}

$ rustc test.rs
error[E0506]: cannot assign to ‘external‘

because it is borrowed

enum NumOrPointer {
Num(u32),
Pointer(&mut u32)

}

// n.b. will not compile
let external : &mut NumOrPointer;
if let Pointer(internal) = external {

*external = Num(0xdeadbeef);

*internal = 12345;
// Kaboom: we’ve just written ‘12345‘
// to the address ‘0xdeadbeef‘

}

$ rustc test.rs
error[E0506]: cannot assign to ‘external‘

because it is borrowed

Rust imposed limitations

Process

System Call

Rand. Pool

RNG

hardware

pub struct SysCallDispatcher {
processes: Vec<Process>,
pool: &mut RandomPool,
...

}

pub struct RandomPool {
busy: bool,
pool: Queue<u32>,
rng: &mut RNG,
syscall: &mut SysCallDispatcher,

}

pub struct RNG {
hw_registers: [usize; 16],
client: &mut RandomPool,

}

Process

System Call

Rand. Pool

RNG

hardware

let syscall: SysCallDispatcher;
let pool: RandomPool;
let rng: RNG;

syscalls.pool = &mut poo;
pool.syscall = &mut syscall;
pool.rng = &mut rng;
rng.client = &mut pool;

Process

System Call

Rand. Pool

RNG

hardware

System Call

Rand. Pool

RNG

Event Driver

Interiormutability
It’s actually safe to have mutable aliases inmany cases.

The key is avoiding mutability and aliasing simultaneously.

Rust has container types with “interior mutability”. Shared
references to these types allowmutation, give certain restrictions:

Cell: Only copy-in/out or replace, no references to
internal value
Mutex: Gives internal references through
mutual-exclusion
TakeCell: Only operates if not already being used

Interiormutability
It’s actually safe to have mutable aliases inmany cases.

The key is avoiding mutability and aliasing simultaneously.

Rust has container types with “interior mutability”. Shared
references to these types allowmutation, give certain restrictions:

Cell: Only copy-in/out or replace, no references to
internal value
Mutex: Gives internal references through
mutual-exclusion
TakeCell: Only operates if not already being used

pub struct SysCallDispatcher {
processes: TakeCell<Vec<Process>>,
pool: &RandomPool,
...

}

pub struct RandomPool {
busy: Cell<bool>,
pool: TakeCell<Queue<u32>>,
rng: &RNG,
syscall: &SysCallDispatcher,

}

pub struct RNG {
hw_registers: TakeCell<[usize; 16]>,
client: &RandomPool,

}

Process

System Call

Rand. Pool

RNG

hardware

let syscall: SysCallDispatcher;
let pool: RandomPool;
let rng: RNG;

syscalls.pool = &poo;
pool.syscall = &syscall;
pool.rng = &rng;
rng.client = &pool;

Process

System Call

Rand. Pool

RNG

hardware

Case study: TockOS

TockOverview

Security focused embedded operating system

Kernel components are mostly untrusted

Targets microcontrollers with <64kB RAM

TockOverview

Security focused embedded operating system

Kernel components are mostly untrusted

Targets microcontrollers with <64kB RAM

TockOverview

Security focused embedded operating system

Kernel components are mostly untrusted

Targets microcontrollers with <64kB RAM

Virtual Alarm

Timer SysCalls

Timer Driver

Timer I2CSPI

RF233 Driver

SPI Driver

802.15.4 Net.

Peripherals

Microcontroller

Kernel

Processes

I2C Driver

Temp Sensor

Kernel written in ~26695 lines of Rust

Kernel written in ~26695 lines of Rust

Example: DMA

struct DMAChannel {
...
enabled: Cell<bool>,
buffer: TakeCell<&’static mut [u8]>,

}

Examples: USB

enum EpCtl {
...
Enable = 1 << 31,
ClearNak = 1 << 26,
Stall = 1 << 21

}

struct InEndpoint {
control: Cell<EpCtl>,
dma_address:
Cell<&’static DMADescriptor>,

...
}

struct USBRegisters {
...
in_endpoints: Cell<&[InEndpoint; 16]>,

}

Minimal TCB
Trusted Kernel components (~3600 LoC)

Board configuration: 806 LoC
Process scheduler: 1784 LoC
Hardware interface: ~1000 LoC

Rust core library

Cell
String, slice
Floating point
Compiler intrinsics (e.g. memcpy)

Conclusion

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

Type Safety Belongs Everywhere
Type safety critical tool for
building secure systems.

Key question: What is the
lowest level of control
needed?

Rust is an existence proof
we can use today

We still need useful
performancemetrics

Should experiment with
other system types

Can we provide rich
security primitives like
DIFC?

amit@amitlevy.com

https://tockos.org/
@talkingtock

mailto:amit@amitlevy.com
https://tockos.org/

struct App {
count: u32,
tx_callback: Callback,
rx_callback: Callback,
app_read: Option<AppSlice<Shared, u8>>,
app_write: Option<AppSlice<Shared, u8>>,

}
pub struct Driver {

app: TakeCell<App>,
}

driver.app.map(|app| {
app.count = app.count + 1

});

/* Load App address into r1, replace with null */
ldr r1, [r0, 0]
movs r2, 0
str r2, [r0, 0]
/* If TakeCell is empty (null) return */
cmp r1, 0
it eq
bx lr
/* Non-null: increment count */
ldr r2, [r1, 0]
add r2, r2, 1
str r2, [r1, 0]
/* Store App back to TakeCell */
str r1, [r0, 0]
bx lr

	Memory and type safety bugs plague systems
	Why are we still building systems in C?
	A Systems Builder's Guide to Rust (abridged)
	Rust imposed limitations
	Case study: Tock OS
	Conclusion

