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Outline 
n  Vanish – a self-destructing data system 
n  Challenges building Vanish on a global-scale P2P DHT 
n  Comet – the DHT we wish we had 

2 



Vanish:  
Increasing Data Privacy with 

Self-Destructing Data 



The Problem: Two Huge Challenges for Privacy 
1.  Data lives forever 

¨ On the web: emails, Facebook photos, Google Docs, blogs, … 
¨  In the home: disks are cheap, so no need to ever delete data 
¨  In your pocket: phones and USB sticks have GBs of storage 

2.  Retroactive disclosure of both data and user keys has 
become commonplace 
¨ Hackers 
¨ Legal actions 
¨ Border seizing 
¨ Theft 
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How can Ann delete her sensitive email? 
n  She doesn’t know where all the copies are 
n  Services may retain data for long after user tries to delete 

Motivating Problem: Data Lives Forever 
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Subpoena, 
hacking, … 

Why Not Use Encryption (e.g., PGP)? 
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Vanish: Self-Destructing Data System 
n  Traditional solutions are not sufficient for self-destructing 

data goals: 
¨ PGP 
¨ Centralized data management services 
¨ Forward-secure encryption 
¨ … 

n  Let’s try something completely new! 
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Idea: 
Leverage P2P systems 



Distributed Hashtables (DHTs) 
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n  Hashtable data structure implemented                           
on a P2P network 
¨  Get and put (index, value) pairs 
¨  Each node stores part of the index space 

 
n  DHTs are part of many file sharing systems: 

¨  Vuze, Mainline, KAD 
¨  Vuze has ~1.5M simultaneous nodes in ~190 countries 

n  Vanish leverages DHTs to provide self-destructing data 
¨  One of few applications of DHTs outside of file sharing 

DHT 

Logical structure 



World-Wide 
DHT 

How Vanish Works: Data Encapsulation 

Vanish 

Encapsulate 
(data, timeout) 

Vanish Data Object 
VDO = {C, L} 

Secret 
Sharing 

 

(M of N) 

k1 
k2 

kN 

. . . 
k3 

R
an

do
m

 in
de

xe
s k1 

k2 
k3 

kN 

Ann 

C = EK(data) 

L 

K 

k1 

k3 
kN 

k2 

9 

VDO = {C, L} 
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How Vanish Works: Data Decapsulation 
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How Vanish Works: Data Timeout 
n  The DHT loses key pieces over time 

¨ Built-in timeout: DHT nodes purge data periodically 
¨ Natural churn: nodes crash or leave the DHT (note for later) 

n  Key loss makes all data copies permanently unreadable 11 
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Evaluation 
n  Experiments to understand and improve (won’t cover): 

1.  data availability before timeout  
2.  data unavailability after timeout 
3.  performance 
4.  security 

 

n  Highest-level results: 
¨ Tradeoffs are necessary between availability, performance 

and security. 
¨ Secret sharing parameters (N and M) affect tradeoffs 
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Conclusions 
n  Two formidable challenges to privacy: 

¨ Data lives forever 
¨ Disclosures of data and keys have become commonplace 

 

n  Vanish combines global-scale DHTs with secret sharing 

n  Vanish ≠ Vuze-based Vanish 
¨ Customized DHTs, hybrid approach, other P2P systems 
¨ Further extensions for security in the paper 
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Vuze DHT Weaknesses 
n  Static data timeouts 
n  Over-replicates 

¨ Maintains 20 replicas of each key-value pair 
¨ Three replicas is sufficient for availability 

n  Over-eager replication 
¨ push-on-join 
¨ Many nodes join the system for very short periods 

n  Weak Sybil protections 
¨ Single IP can take on up to 64K identities 
¨ A laughable number of machines can defeat Vanish in a 

preemptive data harvesting attack 
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n  Fixes 
¨ Variable data timeout (specified by flags) 
¨ No push-on-join 
¨ Variable (and smart) replication factor 
¨ Limit replicas per IP prefix 
¨ … 

n  Changes were simple, but deploying them was difficult: 
¨ Need Vuze engineer 
¨ Long deployment cycle 
¨ Hard to evaluate before deployment 

Vuze DHT Weaknesses 
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Comet: An Active  
Distributed Key-Value Store 



Challenge: Inflexible Key/Value Stores 
n  Applications have different (even conflicting) needs: 

¨ Availability, security, performance, functionality 

n  But today’s key/value stores are one-size-fits-all 

n  Motivating example: our Vanish experience 
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Extensible Key/Value Stores 
n  Allow apps to customize store’s functions 

¨ Different data lifetimes 
¨ Different numbers of replicas 
¨ Different replication intervals 

n  Allow apps to define new functions 
¨ Tracking popularity: data item counts the number of reads 
¨ Access logging: data item logs readers’ IPs 
¨ Adapting to context: data item returns different values to 

different requestors 
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Comet 
n  DHT that supports application-specific customizations 

n  Applications store active objects instead of passive values 
¨ Active objects contain small code snippets that control their 

behavior in the DHT 
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Active Storage Objects (ASOs) 
n  The ASO consists of data and code 

¨ The data is the value 
¨ The code is a set of handlers that are called on put/get 
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function onGet() 
  […] 
end 



n  Each replica keeps track of number of gets on an object 

n  The effect is powerful: 
¨ Difficult  to track object popularity in today’s DHTs 
¨ Trivial to do so in Comet without DHT modifications 

Simple ASO Example  
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ASO 

data 
code 

aso.value = “Hello world!” 
aso.getCount = 0 
 

function onGet() 
  self.getCount = self.getCount + 1 
  return {self.value, 
self.getCount} 

end 



Local Store 

Comet Architecture 
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Comet Prototype 
n  We built Comet on top of Vuze and Lua 

¨ We deployed experimental nodes on PlanetLab 

n  In the future, we hope to deploy at a large scale 
¨ Vuze engineer is particularly interested in Comet for 

debugging and experimentation purposes 

23 



Applications Customization Lines of Code 

Vanish 
Security-enhanced replication 41 
Flexible timeout 15 
One-time values 15 

Adeona 
Password-based access 11 
Access logging 22 

P2P File Sharing 
Smart Bittorrent tracker 43 
Recursive gets* 9 
Publish/subscribe 14 

P2P Twitter Hierarchical pub/sub* 20 

Measurement 
DHT-internal node lifetimes 41 
Replica monitoring 21 

Comet Applications 
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* Require signed ASOs (see paper) 



Three Examples 
1.  Application-specific DHT customization 
2.  Context-aware storage object 
3.  Self-monitoring DHT 
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n  Example: customize the replication scheme 

 
 

n  We have implemented the Vanish-specific replication 
¨ Code is 41 lines in Lua 

1. Application-Specific DHT Customization 

function aso:selectReplicas(neighbors) 
  [...] 
end 
 

function aso:onTimer() 
  neighbors = comet.lookup() 
  replicas = self.selectReplicas(neighbors) 
  comet.put(self, replicas) 
end 
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2. Context-Aware Storage Object 
n  Traditional distributed trackers return a randomized  

subset of the nodes 
 

n  Comet: a proximity-based distributed tracker  
¨ Peers put their IPs and Vivaldi coordinates at torrentID 
¨ On get, the ASO computes and returns the set of          

closest peers to the requestor 

n  ASO has 37 lines of Lua code 
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Proximity-Based Distributed Tracker 
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Comet tracker  
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n  Example: monitor a remote node’s neighbors 
¨ Put a monitoring ASO that “pings” its neighbors periodically 

n  Useful for internal measurements of DHTs 
¨ Provides additional visibility over external measurement 

(e.g., NAT/firewall traversal) 

3. Self-Monitoring DHT 
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aso.neighbors = {} 
 

function aso:onTimer() 
  neighbors = comet.lookup() 
  self.neighbors[comet.systemTime()] = neighbors 
end 



Example Measurement: Vuze Node Lifetimes 
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Vuze Node Lifetime (hours) 

External measurement 
Comet Internal measurement 



Remember the bit about churn? 
n  We tried using churn to control data lifetime in Vanish 

n  The numbers were all wrong 
n  Data stayed around for way too long 

n  Very difficult to accurately measure churn (or size) in 
current global-scale DHTs 
n  Many firewalled nodes - only speak to their neighbors 
n  Contribute to data resilience but are unreachable by clients 

(show up as dead in external measurements) 
n  Measuring internally 

n  Results that better matched our observations in Vanish 
n  May be the only option - don’t control nodes in the system 
n  Depends on what you want to measure 
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Conclusions 
n  Global scale DHTs are a useful abstraction for security 

n  But it turns out not to be that simple 
n  Totally non-idealized environment 
n  Hard to simulate with small deployments 
n  Hard to get changes deployed 

n  Is there hope with extensibility? 
n  Able to modify DHT behavior per appication 
n  Able to test easily 

n  Where are we now? 
n  Some interest from Vuze for their own purposes but still no 

deployment 
n  Could deploy our own cluster but not very useful even at the 
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