
Experiences Leveraging
DHTs for a Security

Application
Amit Levy with:
Roxana Geambasu (Columbia)
Yoshi Kohno (UW)
Arvind Krishnamurthy (UW)
Hank Levy (UW)
Paul Gardner (Vuze)
Vinnie Moscaritolo (PGP)

Outline
n  Vanish – a self-destructing data system
n  Challenges building Vanish on a global-scale P2P DHT
n  Comet – the DHT we wish we had

2

Vanish:
Increasing Data Privacy with

Self-Destructing Data

The Problem: Two Huge Challenges for Privacy
1.  Data lives forever

¨ On the web: emails, Facebook photos, Google Docs, blogs, …
¨  In the home: disks are cheap, so no need to ever delete data
¨  In your pocket: phones and USB sticks have GBs of storage

2.  Retroactive disclosure of both data and user keys has
become commonplace
¨ Hackers
¨ Legal actions
¨ Border seizing
¨ Theft

4

How can Ann delete her sensitive email?
n  She doesn’t know where all the copies are
n  Services may retain data for long after user tries to delete

Motivating Problem: Data Lives Forever

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

5

Ann Carla Sensitive
email

ISP
 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

Subpoena,
hacking, …

Why Not Use Encryption (e.g., PGP)?

ISP
 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

Carla Ann

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

6

Vanish: Self-Destructing Data System
n  Traditional solutions are not sufficient for self-destructing

data goals:
¨ PGP
¨ Centralized data management services
¨ Forward-secure encryption
¨ …

n  Let’s try something completely new!

7

Idea:
Leverage P2P systems

Distributed Hashtables (DHTs)

8

n  Hashtable data structure implemented
on a P2P network
¨  Get and put (index, value) pairs
¨  Each node stores part of the index space

n  DHTs are part of many file sharing systems:

¨  Vuze, Mainline, KAD
¨  Vuze has ~1.5M simultaneous nodes in ~190 countries

n  Vanish leverages DHTs to provide self-destructing data
¨  One of few applications of DHTs outside of file sharing

DHT

Logical structure

World-Wide
DHT

How Vanish Works: Data Encapsulation

Vanish

Encapsulate
(data, timeout)

Vanish Data Object
VDO = {C, L}

Secret
Sharing

(M of N)

k1
k2

kN

. . .
k3

R
an

do
m

 in
de

xe
s k1

k2
k3

kN

Ann

C = EK(data)

L

K

k1

k3
kN

k2

9

VDO = {C, L}
Carla

How Vanish Works: Data Decapsulation

10

Vanish

Encapsulate
(data, timeout)

R
an

do
m

 in
de

xe
s

Ann

C = EK(data)

World-Wide
DHT

Vanish

Decapsulate
(VDO = {C, L})

data

Carla

Secret
Sharing

(M of N) . . .

R
an

do
m

 in
de

xe
s

k1

k3
kN

data = DK(C)

kN
k3

k1

L L

K
Secret
Sharing

(M of N)

X

VDO = {C, L}

k2 k2

Vanish Data Object
VDO = {C, L}

How Vanish Works: Data Timeout
n  The DHT loses key pieces over time

¨ Built-in timeout: DHT nodes purge data periodically
¨ Natural churn: nodes crash or leave the DHT (note for later)

n  Key loss makes all data copies permanently unreadable 11

World-Wide
DHT

Vanish

Secret
Sharing

(M of N) . . .

R
an

do
m

 in
de

xe
s

k1

k3
kN

data = DK(C)

L

KX

kN

k3

k1

11

X

X

Evaluation
n  Experiments to understand and improve (won’t cover):

1.  data availability before timeout
2.  data unavailability after timeout
3.  performance
4.  security

n  Highest-level results:
¨ Tradeoffs are necessary between availability, performance

and security.
¨ Secret sharing parameters (N and M) affect tradeoffs

12

Conclusions
n  Two formidable challenges to privacy:

¨ Data lives forever
¨ Disclosures of data and keys have become commonplace

n  Vanish combines global-scale DHTs with secret sharing

n  Vanish ≠ Vuze-based Vanish
¨ Customized DHTs, hybrid approach, other P2P systems
¨ Further extensions for security in the paper

13

Vuze DHT Weaknesses
n  Static data timeouts
n  Over-replicates

¨ Maintains 20 replicas of each key-value pair
¨ Three replicas is sufficient for availability

n  Over-eager replication
¨ push-on-join
¨ Many nodes join the system for very short periods

n  Weak Sybil protections
¨ Single IP can take on up to 64K identities
¨ A laughable number of machines can defeat Vanish in a

preemptive data harvesting attack

14

n  Fixes
¨ Variable data timeout (specified by flags)
¨ No push-on-join
¨ Variable (and smart) replication factor
¨ Limit replicas per IP prefix
¨ …

n  Changes were simple, but deploying them was difficult:
¨ Need Vuze engineer
¨ Long deployment cycle
¨ Hard to evaluate before deployment

Vuze DHT Weaknesses

15

Comet: An Active
Distributed Key-Value Store

Challenge: Inflexible Key/Value Stores
n  Applications have different (even conflicting) needs:

¨ Availability, security, performance, functionality

n  But today’s key/value stores are one-size-fits-all

n  Motivating example: our Vanish experience

17

App 1 App 2 App 3

Key/value
store

Extensible Key/Value Stores
n  Allow apps to customize store’s functions

¨ Different data lifetimes
¨ Different numbers of replicas
¨ Different replication intervals

n  Allow apps to define new functions
¨ Tracking popularity: data item counts the number of reads
¨ Access logging: data item logs readers’ IPs
¨ Adapting to context: data item returns different values to

different requestors

18

Comet
n  DHT that supports application-specific customizations

n  Applications store active objects instead of passive values
¨ Active objects contain small code snippets that control their

behavior in the DHT

19

App 1 App 2 App 3

Comet

Active object Comet node

Active Storage Objects (ASOs)
n  The ASO consists of data and code

¨ The data is the value
¨ The code is a set of handlers that are called on put/get

20

App 1 App 2 App 3

Comet

ASO

data
code

function onGet()
 […]
end

n  Each replica keeps track of number of gets on an object

n  The effect is powerful:
¨ Difficult to track object popularity in today’s DHTs
¨ Trivial to do so in Comet without DHT modifications

Simple ASO Example

21

ASO

data
code

aso.value = “Hello world!”
aso.getCount = 0

function onGet()
 self.getCount = self.getCount + 1
 return {self.value,
self.getCount}

end

Local Store

Comet Architecture

22 Routing Substrate

K1 ASO1
ASO2 K2

DHT Node
Tr

ad
iti

on
al

D

H
T

C
om

et

Active Runtime

External
Interaction

Handler
Invocation

Sandbox
Policies

ASO1
data
code

ASO Extension API

Comet Prototype
n  We built Comet on top of Vuze and Lua

¨ We deployed experimental nodes on PlanetLab

n  In the future, we hope to deploy at a large scale
¨ Vuze engineer is particularly interested in Comet for

debugging and experimentation purposes

23

Applications Customization Lines of Code

Vanish
Security-enhanced replication 41
Flexible timeout 15
One-time values 15

Adeona
Password-based access 11
Access logging 22

P2P File Sharing
Smart Bittorrent tracker 43
Recursive gets* 9
Publish/subscribe 14

P2P Twitter Hierarchical pub/sub* 20

Measurement
DHT-internal node lifetimes 41
Replica monitoring 21

Comet Applications

24
* Require signed ASOs (see paper)

Three Examples
1.  Application-specific DHT customization
2.  Context-aware storage object
3.  Self-monitoring DHT

25

n  Example: customize the replication scheme

n  We have implemented the Vanish-specific replication
¨ Code is 41 lines in Lua

1. Application-Specific DHT Customization

function aso:selectReplicas(neighbors)
 [...]
end

function aso:onTimer()
 neighbors = comet.lookup()
 replicas = self.selectReplicas(neighbors)
 comet.put(self, replicas)
end

26

2. Context-Aware Storage Object
n  Traditional distributed trackers return a randomized

subset of the nodes

n  Comet: a proximity-based distributed tracker
¨ Peers put their IPs and Vivaldi coordinates at torrentID
¨ On get, the ASO computes and returns the set of

closest peers to the requestor

n  ASO has 37 lines of Lua code

27

Proximity-Based Distributed Tracker

28

Comet tracker

Random tracker

n  Example: monitor a remote node’s neighbors
¨ Put a monitoring ASO that “pings” its neighbors periodically

n  Useful for internal measurements of DHTs
¨ Provides additional visibility over external measurement

(e.g., NAT/firewall traversal)

3. Self-Monitoring DHT

29

aso.neighbors = {}

function aso:onTimer()
 neighbors = comet.lookup()
 self.neighbors[comet.systemTime()] = neighbors
end

Example Measurement: Vuze Node Lifetimes

30

Vuze Node Lifetime (hours)

External measurement
Comet Internal measurement

Remember the bit about churn?
n  We tried using churn to control data lifetime in Vanish

n  The numbers were all wrong
n  Data stayed around for way too long

n  Very difficult to accurately measure churn (or size) in
current global-scale DHTs
n  Many firewalled nodes - only speak to their neighbors
n  Contribute to data resilience but are unreachable by clients

(show up as dead in external measurements)
n  Measuring internally

n  Results that better matched our observations in Vanish
n  May be the only option - don’t control nodes in the system
n  Depends on what you want to measure

31

Conclusions
n  Global scale DHTs are a useful abstraction for security

n  But it turns out not to be that simple
n  Totally non-idealized environment
n  Hard to simulate with small deployments
n  Hard to get changes deployed

n  Is there hope with extensibility?
n  Able to modify DHT behavior per appication
n  Able to test easily

n  Where are we now?
n  Some interest from Vuze for their own purposes but still no

deployment
n  Could deploy our own cluster but not very useful even at the

scale of planet lab 32

