
tock: a secure os for embedded platforms

Amit Levy, PhD Candidate @ Stanford
January 7th, 2016

1

securing the internet of things

2

A Security Disaster

HP conducted a security analysis
of IoT devices

• 80% had privacy concerns
• 80% had poor passwords
• 70% lacked encryption
• 60% had vulnerabilities in UI
• 60% had insecure updates

3

Securing the Internet of Things

• Secure Internet of Things Project
• 3 universities: Stanford, Berkeley, and Michigan
• 12 faculty collaborators

• Rethink IoT systems, software, and applications from the
ground up

• Make a secure IoT application as easy as a modern web
application

4

Who we are?

5

The Internet(s) of ThingsInternet(s) of Things

9

Networked
Devices

Tens/person
Uncontrolled Environment

Cloud integration
Stationary

Safety requirements

WiFi/802.11
TCP/IP

IEEE/IETF

Personal Area
Networks

Tens/person
Personal environment

Open standards
Mobile/pervasive

Fashion vs. function

Bluetooth, BLE
3G/LTE

3GPP/IEEE

Home Area
Networks
Hundreds/person

Uncontrolled Environment
Proprietary standards

Stationary
Consumer requirements

ZigBee, Z-Wave
6lowpan, RPL

IETF/ZigBee/private

Industrial
Automation

Thousands/person
Controlled Environment

Closed systems
Stationary

Industrial requirements

WirelessHART, 802.15.4
6tsch, RPL

IEEE/IIC/IETF

6

IoT: MGC (eMbedded Gateway Cloud) Architecture

Secure Internet of Things 23

Obj-C/C++, Java,
Swift, Javascript/HTML

embedded C
(ARM, avr, msp430)

ZigBee,
ZWave,

Bluetooth,
WiFi

3G/4G,
TCP/IP

Ruby/Rails,
Python/Django,
J2EE, PHP, Node.js

7

IoT Security is Hard

• Complex, distributed systems
• 103 - 106 differences in
resources across tiers

• Many languages, OSs and
networks

• Specialized hardware
Secure Internet of Things 23

Obj-C/C++, Java,
Swift, Javascript/HTML

embedded C
(ARM, avr, msp430)

ZigBee,
ZWave,

Bluetooth,
WiFi

3G/4G,
TCP/IP

Ruby/Rails,
Python/Django,
J2EE, PHP, Node.js

• Just developing applications is hard
• Securing them is even harder

• Enormous attack surface
• Reasoning across hardware, software, protocols etc
• What are the threats and attack models?

• Valuable data: location, presence, medical…
• Rush to development + hard = avoid now, deal later

8

Architectural Principles

End-to-end: consider security holistically, from data
generation to end-user display.

Transparency: we must be able to observe what our devices
are saying about us.

Longevity: these systems will last for up to 20 years and their
security must too.

9

tock: a secure os for embedded
platforms

10

Tock is an embedded operating system we’ve been building for
about a year.

• Event-driven

• Flexible/extensible to any platform

• Multi-programmable

• Principle Least-privilege

11

Tock is an embedded operating system we’ve been building for
about a year.

• Event-driven

• Flexible/extensible to any platform

• Multi-programmable

• Principle Least-privilege

11

Tock is an embedded operating system we’ve been building for
about a year.

• Event-driven

• Flexible/extensible to any platform

• Multi-programmable

• Principle Least-privilege

11

Tock is an embedded operating system we’ve been building for
about a year.

• Event-driven

• Flexible/extensible to any platform

• Multi-programmable

• Principle Least-privilege

11

Tock is an embedded operating system we’ve been building for
about a year.

• Event-driven

• Flexible/extensible to any platform

• Multi-programmable

• Principle Least-privilege

11

why now?

12

Shrinking Development Cycles

• Rapid prototyping
• Open Source
• “Ship early”
• “Ship often”

• How many software
systems go unchanged
for 20 years?

• Small-batch hardware

13

Embedded Systems as Platforms

14

goals

15

Secure

Untrusted Applications

• Isolated from each other and kernel
• Can only access hardware subject to policies
• Cannot crash the system
• Updatable at runtime

Untrusted Kernel Subsystems

• Memory-isolated from each other, core kernel
• Only trusted by applications that use them
• Hardware access through limited interface
(e.g. virtualized)

Small (and simple) Trusted Core

16

Reliable & Performant

Reason about memory requirements at compile-time

• Either the kernel fits or it doesn’t

Applications cannot starve system resources

• Hardware access non-blocking
• Time-sliced scheduling

Isolation shouldn’t impact performance

• Satisfy real-time constraints

17

Portable and Flexible

Cortex-M based microcontrollers

• Memory Protection Units
• Reasonable memory requirements: ~3KiB kernel

Platform-specific configuration

• Drivers hardware agnostic
• Construct a platform declaratively

Small & extensible system call interface

• Currently 4 system calls

18

why is it hard?

19

(Limited) Hardware Isolation Mechanisms

Traditional multi-programming OSs rely on virtual addressing

• Isolation
• Over-provisioning (e.g. swapping to disk, paging)
• Dynamic application loading

• don’t need to know physical memory location ahead of
time

We only have “Memory Protection”

• Read/write/execute bits
• …but no virtualization
• Limited number of regions

20

40 Years of Programming Language Research

21

40 Years of Programming Language Research

• Memory safety
• e.g. no buffer overflows

• Strict type enforcement
• e.g. no unsafe type casts

• Richer type systems
• Generics
• Interfaces

• High-level features
• Closures
• Map/Fold/Iterators…

22

40 Years of Programming Language Research

• (almost) All type-safe languages have a runtime
• Automatic memory management (via Garbage collection)
for safety

• Need control over memory layout
• Performance and reliability issues:

• Garbage collection vs. timing constraints
• Dynamic memory allocation vs. compile-time memory
requirements

• Porting runtime systems for each chip is hard

23

Rust: A Type-Safe “Systems” Programming Language

• Memory and type safety
• Eliminate large classes of bugs at compile time
• Strong type-system can allow component isolation
• Low-level primitives can enable rich security systems

We don’t know how to build systems in such a language
Yet!

24

Rust: A Type-Safe “Systems” Programming Language

• Memory and type safety
• Eliminate large classes of bugs at compile time
• Strong type-system can allow component isolation
• Low-level primitives can enable rich security systems

We don’t know how to build systems in such a language

Yet!

24

Rust: A Type-Safe “Systems” Programming Language

• Memory and type safety
• Eliminate large classes of bugs at compile time
• Strong type-system can allow component isolation
• Low-level primitives can enable rich security systems

We don’t know how to build systems in such a language
Yet!

24

design

25

System Architecture

Rust

Syscall Interface

Kernel Core

Hardware Sandbox

Device Drivers
(Rust language sandbox)

App1.c
App1.lua

App1.rs

26

Memory Protection for Application Isolation

Applications run in “user-land”

• No direct access to hardware
• Can only access memory it owns

Flexible programming environment

• Written in any language¹
• Dynamic memory allocation
• Can “lend” memory to drivers (e.g. for buffers)

¹Currently have a C runtime, experimental Lua and C++ runtimes

27

Dynamic Application loading

Constraints

• Write-only text-segment
• Text and data segments not near each other
• No virtual addressing

Solution

In short: gnarly GCC options

• Compile apps with position independent code (PIC)
• Kernel dynamically sets PIC base

28

Dynamic Application loading

Constraints

• Write-only text-segment
• Text and data segments not near each other
• No virtual addressing

Solution

In short: gnarly GCC options

• Compile apps with position independent code (PIC)
• Kernel dynamically sets PIC base

28

Language Sandbox

Leverage the Rust language’s type-system to isolate untrusted
drivers

• Drivers only have access to explicitly allowed hardware
resources

• Cannot address arbitrary memory
• Only consensual access to applications

Hope for even richer security policies:

• Resource constraints?
• Mandatory access control?

29

rust

30

Why Rust?

Two distinguishing properties from other safe languages:

• Enforces memory and type safety without a garbage
collector

• Explicit separation of trusted vs. untrusted code
• Untrusted code is strictly bound by the type system
• Trusted code can circumvent the type system

31

Rust avoids the runtime overhead of garbage collection by
using ownership to determine when to free memory at
compile-time.

32

Ownership for Safety

Each Value has a Single Owner

Key Property
When the owner goes out of scope, we can deallocate mem-
ory for the value.

Memory for the value 43 is allocated and bound to the variable
x.

{
let x = 43

}

When the scope exits, x is no longer valid and the memory is
“freed”

33

Ownership for Safety

Each Value has a Single Owner

Key Property
When the owner goes out of scope, we can deallocate mem-
ory for the value.

Memory for the value 43 is allocated and bound to the variable
x.

{
let x = 43

}

When the scope exits, x is no longer valid and the memory is
“freed”

33

Each Value has a Single Owner

Single owner means no aliasing, so values are either copied or
moved between variables.

This is an error:

{
let x = Foo::new();
let y = x;
println(”{}”, x);

}

because Foo::new() has been moved from x to y, so x is no
longer valid.

34

Each Value has a Single Owner

Single owner means no aliasing, so values are either copied or
moved between variables.

This is an error:

{
let x = Foo::new();
let y = x;
println(”{}”, x);

}

because Foo::new() has been moved from x to y, so x is no
longer valid.

34

How Ownership Impacts fn()

Functions must explicitly hand ownership back to the caller:

fn bar(x: Foo) -> Foo {
// Do stuff
x // <- return x

}

35

Borrows

Or can use borrows: a type of reference which does not
invalidate the owner.

fn bar(x: &mut Foo) {
// Do stuff
// the borrow is implicitly released.

}

fn main() {
let mut x = Foo::new();
bar(&mut x);
println!(”{}”, x); // x still valid

}

36

Borrows

Borrows are resolved at compile-time, with some constraints:

• A value can only be mutably borrowed if there are no
other borrows of the value.

• Borrows cannot outlive the value they borrow.
• Values cannot be moved while they are borrowed.

37

Ownership: The Good and The Bad

The Bad

Ownership doesn’t allow circular dependencies.

But circular dependencies are everywhere in real systems.

The Good

Once the compiler verifies type safety, the resulting code looks
very close to compiled C-code.

38

Ownership: The Good and The Bad

The Bad

Ownership doesn’t allow circular dependencies.

But circular dependencies are everywhere in real systems.

The Good

Once the compiler verifies type safety, the resulting code looks
very close to compiled C-code.

38

conclusion

39

Tock

• Event-driven
• Flexible/extensible to any platform
• Multi-programmable
• Principle Least-privilege

40

Our Progress So Far

• Second clean re-design iteration
• I think we’re done this time :)

• Implementation for Atmel SAM4L
based Firestorm platform

• Drivers for virtualized UART,
TMP006, GPIO

• Coming very soon:
• Bluetooth Low Energy (using
nrf51822)

• 802.15.4 (using rf233)

41

Challenges & Questions

• What are the real threat models?
• How to leverage a safe type system for OS security?
• Multi-programming without virtual memory
• What’s the interface for untrusted kernel drivers?

42

	Securing the Internet of Things
	Tock: A Secure OS for Embedded Platforms
	Why now?
	Goals
	Why is it hard?
	Design
	Rust
	Conclusion

