
ownership is theft: experiences building an
embedded os in rust

Amit Levy Michael P Andersen Bradford Campbell David Culler
Prabal Dutta Branden Ghena Philip Levis Pat Pannuto
October 4th, 2015

1

ownership is theft: experiences building an
embedded os in rust

Amit Levy Michael P Andersen Bradford Campbell David Culler
Prabal Dutta Branden Ghena Philip Levis Pat Pannuto
October 4th, 2015

2

• TinyOS about 15 years old

• Lots of changes in embedded applications hardware since

• TinyOS written in nesC (a dialect of C)

• Decided to revisit the design of an embedded OS and
write it in a safe language.

3

• TinyOS about 15 years old

• Lots of changes in embedded applications hardware since

• TinyOS written in nesC (a dialect of C)

• Decided to revisit the design of an embedded OS and
write it in a safe language.

3

• TinyOS about 15 years old

• Lots of changes in embedded applications hardware since

• TinyOS written in nesC (a dialect of C)

• Decided to revisit the design of an embedded OS and
write it in a safe language.

3

• TinyOS about 15 years old

• Lots of changes in embedded applications hardware since

• TinyOS written in nesC (a dialect of C)

• Decided to revisit the design of an embedded OS and
write it in a safe language.

3

“When we ported TinyOS from C to nesC it only took a few weeks!”

4

But here we are a year later...

We didn’t take into account how much our choice of language
would affect our system’s design.

5

But here we are a year later...

We didn’t take into account how much our choice of language
would affect our system’s design.

5

It can be convenient to think of operating system design and
language design as independent.

OS Designer

“If I simply port my bug-free C code into a safe language, my
OS will be safe!”

PL Designer

“My new language abstraction provides safety, and all you
have to do is use it ubiquitously in your system!”

But we can’t forgot that system design and language design
are actually co-dependent!

6

It can be convenient to think of operating system design and
language design as independent.

OS Designer

“If I simply port my bug-free C code into a safe language, my
OS will be safe!”

PL Designer

“My new language abstraction provides safety, and all you
have to do is use it ubiquitously in your system!”

But we can’t forgot that system design and language design
are actually co-dependent!

6

It can be convenient to think of operating system design and
language design as independent.

OS Designer

“If I simply port my bug-free C code into a safe language, my
OS will be safe!”

PL Designer

“My new language abstraction provides safety, and all you
have to do is use it ubiquitously in your system!”

But we can’t forgot that system design and language design
are actually co-dependent!

6

It can be convenient to think of operating system design and
language design as independent.

OS Designer

“If I simply port my bug-free C code into a safe language, my
OS will be safe!”

PL Designer

“My new language abstraction provides safety, and all you
have to do is use it ubiquitously in your system!”

But we can’t forgot that system design and language design
are actually co-dependent!

6

Overview

• Background
• Microcontrollers
• Tock: an new embedded OS
• Rust

• Two Challenges
• Conclusion

7

background - microcontrollers

8

Who uses Microncontrollers?

9

Not Your Grandchildren’s Processor

• Very little memory
• Range 16-512KB RAM

• Crashes are particularly expensive:
• Cannot assume user intervation (no screen or keyboard)
• High stakes: implanted medical devices, home
automation…

• Limited hardwared protection:
• Specifically, no virtual memory

10

Limited Hardware Motivates Language Choice

• Too little memory to use processes for isolation
• Crashes are expensive, so we should catch as many bugs
as possible at compile-time.

11

background - tock

12

Tock is an embedded operating system we’ve been building for
about a year.

13

Why a New OS?

• Existing systems: TinyOS, Contiki, FreeRTOS
• New requirements
• New hardware
• New programming language(s)

14

New Requirements

• Traditional embedded operating systems were design for
single app devices.

• Software updated never or rarely.
• Everything is trusted, including the app.

• New applications are platforms.
• Software updates
• Third-party apps

• Kernel extensions should really be isolated
• Drivers may come from a variety of sources.
• …like Linux drivers but for your defibrillator!

15

New Hardware

Microcontrollers have improved drastically

• From 16-bit arch @ 6Mhz to 32-bit arch @ 48Mhz
• More busses, more timers, AES encryption, etc in hardware
• A system-call interfance no longer a performance barrier

Some limited support for hardware protection

• Memory Protection Unit in ARM Cortex-M series

16

New Programming Language

Rust, a new safe language without the runtime overhead

• Memory and type safety
• Eliminate large classes of bugs at compile time
• Strong type-system can allow component isolation
• Low-level primitives can enable rich security systems

17

Tock Architecture

Rust

Syscall Interface

Kernel Core

Hardware Sandbox

Device Drivers
(Rust language sandbox)

App1.c
App1.lua

App1.rs

18

background - rust

19

Why Rust?

Two distinguishing properties from other safe languages:

• Enforces memory and type safety without a garbage
collector

• Explicit separation of trusted vs. untrusted code
• Untrusted code is strictly bound by the type system
• Trusted code can circumvent the type system

20

Rust avoids the runtime overhead of garbage collection by
using ownership to determine when to free memory at
compile-time.

21

Ownership for Safety

Each Value has a Single Owner

Key Property
When the owner goes out of scope, we can deallocate mem-
ory for the value.

Memory for the value 43 is allocated and bound to the variable
x.

{
let x = 43

}

When the scope exits, x is no longer valid and the memory is
“freed”

22

Ownership for Safety

Each Value has a Single Owner

Key Property
When the owner goes out of scope, we can deallocate mem-
ory for the value.

Memory for the value 43 is allocated and bound to the variable
x.

{
let x = 43

}

When the scope exits, x is no longer valid and the memory is
“freed”

22

Each Value has a Single Owner

Single owner means no aliasing, so values are either copied or
moved between variables.

This is an error:

{
let x = Foo::new();
let y = x;
println(”{}”, x);

}

because Foo::new() has been moved from x to y, so x is no
longer valid.

23

Each Value has a Single Owner

Single owner means no aliasing, so values are either copied or
moved between variables.

This is an error:

{
let x = Foo::new();
let y = x;
println(”{}”, x);

}

because Foo::new() has been moved from x to y, so x is no
longer valid.

23

How Ownership Impacts fn()

Functions must explicitly hand ownership back to the caller:

fn bar(x: Foo) -> Foo {
// Do stuff
x // <- return x

}

24

Borrows

Or can use borrows: a type of reference which does not
invalidate the owner.

fn bar(x: &mut Foo) {
// Do stuff
// the borrow is implicitly released.

}

fn main() {
let mut x = Foo::new();
bar(&mut x);
println!(”{}”, x); // x still valid

}

25

Borrows

Borrows are resolved at compile-time, with some constraints:

• A value can only be mutably borrowed if there are no
other borrows of the value.

• Borrows cannot outlive the value they borrow.
• Values cannot be moved while they are borrowed.

26

challenges

27

1. Ownership vs. Cycles
2. Closures as Callbacks
3. Memory allocation for long-lived closures (see paper)

28

challenges - ownership vs. cycles

29

Ownership vs. Cycles

Circular references between OS modules are ubiquitous.

RadioDriver has to notify IPStack of incoming packets,
while IPStack uses the RadioDriver to send packets.

impl IPStack {
fn send(&mut self, packet) {
packet.concat_ip_header_to_pkt();
self.radio.send(packet);

}
}
impl RadioDriver {
fn on_receive(&mut self, packet) {
self.ip_stack.incoming(packet);

}
} 30

Several Possible Solutions

1. Combine mutually dependent modules
2. Message passing instead of shared state
3. Use unsafe language features
4. Use explicitly aliasable reference types

31

Combine Mutually Dependent Modules

impl IPStackAndAlsoRadioDriver {
fn send(&mut self, packet) {
packet.concat_ip_header_to_pkt();
// write packet to radio

}

fn on_receive(&mut self, packet) {
// just handle here

}
}

• No modularity/extensibility.
• Least upper bound of trust

32

Message Passing

impl IPStack
fn send(&mut self, packet) {
packet.concat_ip_header_to_pkt();
self.packet_out_chan.send(packet);

}

fn do_work() {
self.process_pkt(self.packet_in_chan.recv());

}
}

Might work if you’re willing to have threads and dynamically
allocate or block.

33

Use unsafe Features

pub static mut IPSTACK : IPStack = ...;

impl UDP {
fn send(&self, packet) {
unsafe { // Unsafe to borrow a mutable static

IPSTACK.send(packet);
}

}
}

Requires including trusting virtually every component in the
system.

34

Explicitly Sharable Reference Types

• A small bit of unsafe to make a reference type that is
aliasable.

• E.g. core::cell::RefCell dynamically checks borrow
rules

• Loose compile-time guanratees

35

Explicitly Sharable Reference Types

This is what we are using.

• Had to completely eliminate concurrency in the kernel
• Be very cautious about who gets shared references.
• Enqueue all interrupts to run in main kernel thread

• Avoid any work in interrupt handlers
• Lose hardware interrupt priorities
• Probably OK for performance, although still need to
validate

36

challenges - closures as callbacks

37

Problem

Asyncornous code in C usually uses one of two mechanism:

• State-machines
• Function pointers + stack ripping

Both are:

• Difficult to read/write/maintain
• Bug prone

38

Closures to the Rescue?

Event-driven application languages (e.g. JavaScript) address
this problem by specifying callbacks as closures at the callsite.

var count = 0;

setInterval(function() {
console.log(count + ” clicks”);

}, 2000);

onClick(function() {
count += 1;

});

Rust has closures… so we can just do that!

39

Closures to the Rescue?

Event-driven application languages (e.g. JavaScript) address
this problem by specifying callbacks as closures at the callsite.

var count = 0;

setInterval(function() {
console.log(count + ” clicks”);

}, 2000);

onClick(function() {
count += 1;

});

Rust has closures… so we can just do that!

39

Ownership Strikes Again

In Rust, closures have two options:

• Take ownership of closed over variables
• Complete before returning to the caller

let mut x = 0;

setInterval(move ||
println!(”{} clicks”, x);

}, 2000);

// x is no longer valid in this context, and we
// cannot create the closure for onClick

40

Result: Oversharing vs. Undersharing

We have to carefully partition state between caller and
callbacks. But that’s very hard to get right.

Overshare with the callback:

// No other code can access any LEDs
setTimeout(|| {
leds.activityToggle();

}, 2000);

Partition resources into tiny interfaces that are hard to
manage:

setTimeout(|| {
activityLed.toggle();

}, 2000);
41

conclusion

42

Conclusion

• Embedded systems have unique requirements
• Rust seems well-suited for a resource constrained OS

• Type- and memory- safe with no garbage collector

• Tock: an embedded OS
• Comines hardware and language protection

• Ownership is both the hero and the villan in our story
• Closures not as powerful as we’re familiar from other
languages

In the paper

• Proposal to expose threads in the type system

43

Conclusion

System design and language design are not independent.

Open Questions

How should we design operating systems to best leverage safe
languages?

How can we design safe languages to better target low-level
systems?

Thanks!

http://tockos.org
http://github.com/helena-project/tock

44

http://tockos.org
http://github.com/helena-project/tock

Conclusion

System design and language design are not independent.

Open Questions

How should we design operating systems to best leverage safe
languages?

How can we design safe languages to better target low-level
systems?

Thanks!

http://tockos.org
http://github.com/helena-project/tock

44

http://tockos.org
http://github.com/helena-project/tock

Conclusion

System design and language design are not independent.

Open Questions

How should we design operating systems to best leverage safe
languages?

How can we design safe languages to better target low-level
systems?

Thanks!

http://tockos.org
http://github.com/helena-project/tock

44

http://tockos.org
http://github.com/helena-project/tock

Conclusion

System design and language design are not independent.

Open Questions

How should we design operating systems to best leverage safe
languages?

How can we design safe languages to better target low-level
systems?

Thanks!

http://tockos.org
http://github.com/helena-project/tock

44

http://tockos.org
http://github.com/helena-project/tock

	Background - Microcontrollers
	Background - Tock
	Background - Rust
	Challenges
	Challenges - Ownership vs. Cycles
	Challenges - Closures as Callbacks
	Conclusion

