
Research Statement
Amit Levy

My research interests center on the design and imple-
mentation of secure systems.Mywork is guided by two
principles: (1) system security should not impede third-
party developers, who are often the main source of in-
novation, and (2) systems that secure third-party exten-
sions also improve security by reducing the amount of
specially-privileged first-party code.

Today, very few systems adhere to these principles. For
example, Facebook’s web platform exposes a limited
subset of user data to applications due to security and
privacy concerns. But many features require greater ac-
cess to data, and hence can only be implemented by
privileged Facebook engineers. This restricts innova-
tion in features such as the news feed to a tiny fraction
of developers. It also leaves user data more vulnerable
when privileged code is buggy.

This problem isn’t just the result of poor system build-
ing. It is hard to design highly extensible systems that
are both secure and useful. Moreover, I believe that se-
curity and extensibility must be evaluated end-to-end,
under real-world usage by actual practitioners. Most of
the systems I have designed and built evolved through
four phases of research:

1. Identifying the problem of systems that fail to re-
alize their potential by handicapping third-party
developers.

2. Seizing opportunity to attract a meaningful user
base to a clean-slate system.

3. Engineering a system that addresses previous lim-
itations while maintaining or improving security.

4. Evaluation of the new system. Because I fre-
quently pursue the twin goals of security and ex-
tensibility, my systems cannot be evaluated in a
vacuum. They must be evaluated empirically, by
observing how they hold up to real third-party
developers. Evaluation may involve promoting
adoption of open source implementations, engag-
ing with developers to foster a community, or
even hiring inexperienced developers to use a re-
search platform. Invariably, it also involves feed-
ing lessons from the user base back into the sys-
tem design.

I’ve used this approach to build systems for the In-
ternet of Things, web platforms, and low-power wire-
less networking. I’ve published the results of this re-
search in top conferences (including SOSP, OSDI, and
MobiSys), released open-source implementations, and
built a community of researchers and practitioners
around one of them.

1 Tock: Internet of Things

Low-powermicrocontrollers are increasingly prevalent
in the Internet of Things. These devices have extreme
memory constraints—typically 16-512 kB of RAM.
They also lack hardware features, such as virtual mem-
ory, that are integral to the design of modern operat-
ing systems. These constraints preclude traditional iso-
lation abstractions, such as processes or microkernel
services, leading to systems in which every line of code
is fully trusted.

The result is that device manufacturers cannot safely
run third-party applications on their microcontroller
systems. Worse, these siloed devices end up incorpo-
rating large quantities of third-party code anyway, in
the form of open source libraries or device drivers. A
bug in any of this code makes the whole system vulner-
able to attackers. If the Internet of Things continues to
grow as predicted, we risk ending up with vulnerable
and siloed devices running the world around us.

Fortunately, there’s a huge opportunity here. Despite
their widespread use, microcontrollers have no en-
trenched operating system and typically run non-
portable applications. Hence, compatibility, the peren-
nial barrier to research OS adoption, largely does not
apply. Practitioners can easily adopt a new embedded
operating system if it strengthens security, improves
driver robustness, and enables harnessing of third-party
application developers.

At the same time, other advances have opened new
design possibilities for a clean-slate embedded OS.
The success of Rust means that, for the first time,
we have a robust developer community behind a lan-
guage simultaneously providing memory safety and

1



complete control over memory allocation, deallocation,
and layout. New hardware, such as the ARM MPU,
offers non-traditional hardware-based memory protec-
tion. Between the compiler and hardware, these are
powerful mechanisms for isolating untrusted code even
in memory-constrained systems, but they cannot easily
be retrofitted to legacy systems.

To take advantage of this opportunity, I developed
Tock [13], a new operating system for microcontrollers.
Through novel isolation abstractions, Tock makes it
safe for end-users to run untrusted third-party applica-
tions and protects the kernel from buggy drivers. Tock
isolates the memory and performance of applications
using a preemptive process-like abstraction enforced in
hardware by the MPU. The kernel is written in Rust
and provides a type-safe API for building kernel com-
ponents that ensures isolation of memory faults at vir-
tually no runtime cost.

Tock’s problem space presented unique technical chal-
lenges. With limited memory, any global heap allo-
cation is a serious threat to system stability. On the
other hand, the kernel cannot anticipate applications’
resource demands ahead of time. Tock resolves this
tension with a new memory management mechanism
called “grants.” Grants manage process-specific kernel
heaps, ensuring the needs of one process do not affect
the capabilities of another [8].

We originally built Tock for our specific hardware and
use cases, but, frankly, it’s not that surprising that
Ph.D. students could run their own applications on their
own operating systems. The real test was whether other
developers could write applications for Tock and how
the security properties would hold. To answer this ques-
tion, we encouraged adoption and sought feedback by
leading tutorials for both novice and experienced em-
bedded developers [14–16]. We also introduced Tock
in the classroom to teach embedded programming [4],
wrote documentation, and engaged online with both
companies and hobbyists.

The result of this effort is a growing community of
Tock developers from both academia and industry. Aca-
demic researchers are using Tock to build a city-scale
sensor network [11]. Helium (a well-funded ~50 per-
son start-up in the Internet of Things space) is using
Tock to build the next version of their programmable
Internet of Things module [7]. Google ported it to their

hardware root-of-trust [12] for use in some internal se-
curity products [10].

Fostering an ecosystem around Tock provided more
than just validation of the architecture, it provided un-
expected results. For example, we thought that pro-
cess isolation would, at best, not hamper developer
productivity. We learned that many developers actu-
ally preferred using processes, e.g., because the oper-
ating system could provide useful crash reports. On the
other hand, community experience revealed that asyn-
chronous I/O interfaces are error prone for develop-
ers who don’t understand kernel internals, particularly
when low-level operations are hidden in library code
and used in more complex applications. As we con-
tinue answering questions like how to specify policies,
how to account for power consumption, and how to ef-
ficiently configure resources, we’ve gained the ability
to draw on applications and workloads from an active
community of practitioners instead of guessing, a pri-
ori, what will work best with applications.

2 Hails: Web Platforms

A small number of large web sites, such as Facebook,
curate most user data online. On the surface, these sites
are becoming software platforms by giving third-party
applications access to some data via APIs. In practice,
though, most data access is reserved for the platform
itself since end-users have to trust third-party applica-
tions completely with whatever data the applications
can access.

The web platform restricts which applications can ac-
cess data, but not how applications use the data. For
example, if Facebook allows a third-party application
to access a user’s photos, it’s up to that application to
make sure the photos are not displayed to other, unau-
thorized users. Is it possible to ensure end-user secu-
rity policies are enforced end-to-end without restricting
third-party applications’ capabilities?

One opportunity is a shift in how developers build and
deploy web applications. Many developers are now
deploying web applications on Platforms-as-a-Service
(PaaS), like Heroku, Amazon Beanstalk, and Google
AppEngine. These platforms alleviate the need for de-
velopers to manage their own servers. In exchange, de-

2



velopers adhere to the platform’s programming conven-
tions, such as choice of language, and build applica-
tions to work with databases and other services avail-
able on the platform.

Perhaps the deployment platform can enforce security
policies on user data end-to-end? Instead of restricting
which applications can access data, the trusted platform
can track data across applications. This matches the
policies users actually care about: who can see their
data, not which developer’s code can manipulate or ac-
cess it along the way.

Hails [5] is a framework specifically designed to ad-
dress the developer barriers erected by sites such as
Facebook. In Hails, third-party applications run on the
platform’s servers instead of servers run by the devel-
oper. The trusted platform ensures that applications
that have seen sensitive data can’t communicate with
users, files, databases, etc., that are not authorized to
see that data. However, all functionality is implemented
by the applications themselves. For example, we cre-
ated a GitHub-like code sharing platform built entirely
of untrusted applications.

Of course, the ultimate goal is to make sure ordinary
developers can build secure platforms and applications
using Hails, not just domain experts (i.e., me and the
other Hails authors). To evaluate this, I supervised four
undergraduates in their first year of programming who
built a web platform and applications over the course
of a summer internship. Another group of more expe-
rienced students did the same during a summer intern-
ship at MIT Lincoln Labs. In both cases, the students
successfully built interesting applications, but found se-
curity policies difficult to express. This experience led
us to create a DSL for writing policies and change how
policies interact with the database.

Some of my collaborators founded a company, Intrinsic
[6], that is porting Hails to Node.js.

3 Beetle: Wireless Protocols

Mobile phones, wireless routers, and other gateway de-
vices allow wireless peripherals to communicate with
local and cloud applications using specialized network-
ing protocols like Bluetooth Low Energy. Unfortu-

nately, intuitively simple use cases, such as logging
heart rate in one application while viewing it in another,
are impossible. Current operating systems simply do
not allow applications to share access to Bluetooth Low
Energy peripherals safely, resulting in barriers for de-
velopers.

I found an opportunity to address this deficiency in
GATT, the application layer protocol Bluetooth Low
Energy devices already use to communicate with ap-
plications. GATT is an ideal protocol for multiplexing
access to devices. It has an attribute data-model. End-
points perform operations such as GET, WRITE, and
NOTIFY on the attributes. This is enough information
for the operating system to let applications safely share
access to peripherals without explicit coordination, and
without changing the peripherals or the applications.

I designed and built Beetle [9], a new hardware inter-
face for Bluetooth Low Energy. Beetle interposes on
the GATT protocol between applications and devices.
The system can distinguish between, say, a command
to discover peripheral capabilities or fetch a reading
from one that unsubscribes from future sensor read-
ing updates. As a result, Beetle allows shared access
to peripherals from multiple applications, fine-grained
access control to peripheral resources, and transparent
access to peripherals over a network.

Because GATT is not specific to any particular class
of peripheral devices, Beetle works with existing pe-
ripherals and applications without requiring the operat-
ing system to understand any specific peripheral’s func-
tionality. For example, I ran Beetle on my own Android
phone for severalmonths so I could use two fitness apps
that concurrently connect to a heart-rate monitor.

4 Industrial Impact

During my PhD I co-founded MemCachier, the largest
provider of memcache to PaaS web applications. The
opportunity for MemCachier was born of the same ob-
servation asHails: that developers had begun deploying
web applications on platforms like Heroku. These ap-
plications require additional services, like a distributed
cache, that the platform does not provide and that can
be done much more cost-effectively for a large number
of small applications using a multi-tenant system.

3



MemCachier, like many other commercial products, is
the result of low-hanging fruit (and the material need to
pay rent in the Bay Area) rather than cutting edge tech-
nical advances. Nonetheless, deploying such a system
at scale has resulted in benefits to the research commu-
nity, as data from MemCachier traces enabled several
projects by other researchers [1–3].

5 Future Work

Most academic research does not directly result in de-
ployed systems, nor should it. However, my experi-
ence with Tock has taught me how advantageous de-
ploying systems from an academic setting can be when
trying to effect a radical change across an industry.
Large companies like Google, small companies like He-
lium, academic sensor network researchers, and open
source communities may not typically collaborate on a
greenfield project. Nonetheless, they are all investing
resources in Tock.

My work on Tock raises a variety of research ques-
tions about how to support multiprogramming on con-
strained platforms. These include how to prevent indi-
vidual applications from exhausting the system’s power
budget; how to configure the system for optimal power
consumption given a dynamic, untrusted application
workload; and how to specify and enforce end-user se-
curity policies.

I will continue to look into other opportunities for se-
cure and extensible systems. For example, “serverless
computing” (a model of cloud computing where devel-
opers schedule granular functions rather than virtual
machine instances) opens a space to simultaneously
give applications more access to hardware features and
schedule resources more efficiently.

Academia plays a critical role in shaping the software
that future generations of developers will build. Aca-
demic research expands the frontier of what developers
imagine they can build. By centering system security
while striving to maximize developer potential, we can
help create computing that is more usable, more acces-
sible to developers, and safer.

References

[1] Blankstein, A., Sen, S. and Freedman, M.J. Hyper-
bolic Caching: Flexible Caching for Web Applications.
USENIX Annual Technical Conference (July 2016).

[2] Cidon, A., Eisenman, A., Alizadeh, M. and Katti, S.
Cliffhanger: Scaling Performance Cliffs in Web Mem-
ory Caches. 13th USENIX Symposium on Networked
Systems Design and Implementation (March 2016).

[3] Cidon, A., Rushton, D., Rumble, S.M. and
Stutsman, R. Memshare: a Dynamic Multi-tenant Key-
value Cache. USENIX Annual Technical Conference
(July 2017).

[4] EE 285/CS 241: Embedded Systems Workshop:
http://web.stanford.edu/class/cs241/.

[5] Giffin, D.B., Levy, A., Stefan, D., Terei, D., Maz-
ières, D., Mitchell, J.C. and Russo, A. Hails: Protect-
ing Data Privacy in Untrusted Web Applications. 10th
USENIX Symposium on Operating System Design and
Implementation (OSDI) (October 2012).

[6] Intrinsic Coporate Website: https://intrinsic.com.

[7] IRC chat log with Helium engineer:
https://bot.tockos.org/tockbot/tock/2017-11-
14/?msg=40209&page=1.

[8] Levy, A., Campbell, B., Ghena, B., Giffin, D.B.,
Pannuto, P., Dutta, P. and Levis, P. Multiprogramming
a 64kB Computer Safely and Efficiently. 26th Sympo-
sium on Operating Systems Principles (SOSP) (Octo-
ber 2017).

[9] Levy, A., Hong, J., Riliskis, L., Levis, P. and Win-
stein, K. Beetle: Flexible Communication for Bluetooth
Low Energy. 14th International Conference on Mobile
Systems (MobiSys) (June 2016).

[10] Port of Tock to Google’s Titan: https://github.com/
domrizzo/tock-hotel.

[11] Signpost GitHub Repository: https://github.com/
lab11/signpost.

[12] Titan in depth: Security in plaintext:
https://cloudplatform.googleblog.com/2017/08/Titan-
in-depth-security-in-plaintext.html.

[13] Tock OS Homepage: https://www.tockos.org/.

4

http://web.stanford.edu/class/cs241/
https://intrinsic.com
https://bot.tockos.org/tockbot/tock/2017-11-14/?msg=40209&page=1
https://bot.tockos.org/tockbot/tock/2017-11-14/?msg=40209&page=1
https://github.com/domrizzo/tock-hotel
https://github.com/domrizzo/tock-hotel
https://github.com/lab11/signpost
https://github.com/lab11/signpost
https://cloudplatform.googleblog.com/2017/08/Titan-in-depth-security-in-plaintext.html
https://cloudplatform.googleblog.com/2017/08/Titan-in-depth-security-in-plaintext.html
https://www.tockos.org/


[14] SOSP Tutorial: Tock Operating System. SOSP
2017.

[15] Tock Operating System Tutorial. SenSys 2017.

[16] Training: Tock Embedded OS. RustConf 2017.

5


	Tock: Internet of Things
	Hails: Web Platforms
	Beetle: Wireless Protocols
	Industrial Impact
	Future Work
	References

