
Design Considerations for Low Power Internet
Protocols

Hudson Ayers∗, Paul Crews∗, Hubert Teo∗, Conor McAvity∗, Amit Levy†, Philip Levis∗
∗Stanford University, †Princeton University

{hayers, ptcrews, hteo, cmcavity}@stanford.edu, aalevy@cs.princeton.edu, pal@cs.stanford.edu

Abstract—Low-power wireless networks provide IPv6 connec-
tivity through 6LoWPAN, a set of standards to aggressively
compress IPv6 packets over small maximum transfer unit (MTU)
links such as 802.15.4.

The entire purpose of IP was to interconnect different net-
works, but we find that different 6LoWPAN implementations
fail to reliably communicate with one another. These failures
are due to stacks implementing different subsets of the standard
out of concern for code size. We argue that this failure stems
from 6LoWPAN’s design, not implementation, and is due to
applying traditional Internet protocol design principles to low-
power networks.

We propose three design principles for Internet protocols
on low-power networks, designed to prevent similar failures in
the future. These principles are based around the importance
of providing flexible tradeoffs between code size and energy
efficiency. We apply these principles to 6LoWPAN and show that
the modified protocol provides a wide range of implementation
strategies while allowing implementations with different strate-
gies to reliably communicate.

Index Terms—Interoperability, Embedded Systems, IoT

I. INTRODUCTION

Interoperability has been fundamental to the Internet’s suc-

cess. The Internet Protocol (IP) allows devices with different

software and link layers to communicate. IP provides a basic

communication substrate for many higher layer protocols and

applications. In the decades of the Internet’s evolution, we

have accumulated and benefited from a great deal of wisdom

and guidance in how to design, specify, and implement robust,

interoperable protocols.

Over the past decade, the Internet has extended to tens

of billions of low-power, embedded systems such as sensor

networks and the Internet of Things. Hundreds of proprietary

protocols have been replaced by 6LoWPAN, a standardized

format for IP networking on low-power wireless link lay-

ers such as 802.15.4 [1] and Bluetooth Low Energy [2].

6LoWPAN was created with the express purpose of bringing

interoperable IP networking to low power devices [3]. Many

embedded operating systems have adopted 6LoWPAN [4]–

[10] and every major protocol suite uses it [11], [12]. In fact,

devices today can communicate with the broader Internet.

However, in many cases 6LoWPAN implementations cannot

communicate with each other. We find that no pairing of the

major implementations fully interoperates (Section III). De-

spite 6LoWPAN’s focus on interoperability, two key features

of the protocol — range extension via mesh networking of

devices, and the convenience of different vendors being able

to share a gateway — are largely impossible 10 years later.

Each of the openly available 6LoWPAN stacks, most of

which are used in production, implements a subset of the

protocol and includes compile-time flags to cut out additional

compression/decompression options. As a result, two devices

might both use 6LoWPAN, yet be unable to exchange certain

IP packets because they use required features the other does

not implement. This is especially problematic for gateways,

which need to be able to talk to multiple implementations to

enable significant scaling in real world applications.

This paper argues that the failure of 6LoWPAN inter-

operability stems from applying traditional protocol design

principles to low-power networks. Low-power protocols min-

imize energy consumption via compression. Squeezing every

bit out of packet headers, however, requires many different

options/operating modes. Principles such as Postel’s Law 1

state that an implementation must be able to receive every

feature, even thought it only sends some of them. However,

code space is tight on many systems. As a result, when an

application does not fit, developers cut out portions of the

networking stack and stop working with other devices. Put

another way, 3kB of unused compression code seems tiny, but

when removing it allows an additional 3kB of useful features,

developers cut out parts of 6LoWPAN and devices become

part of a custom networked system rather than the Internet.

This paper presents three design principles which resolve

this tension between interoperability and efficiency. Proto-

cols following these principles get the best of both worlds:

resource-limited devices can implement subsets of a protocol

to save code space while remaining able to communicate with

every other implementation.

Capability spectrum: a low-power protocol specifies a linear

spectrum of capabilities. Simpler implementations have fewer

capabilities and save less energy, while fuller implementations

have strictly more capabilities and are able to save more

energy. When two devices differ in capability levels, com-

munication can always fall back to the lower one.

Capability discovery: a low-power protocol provides mech-

anisms to discover the capability of communicating devices.

This discovery can be proactive (advertisements) or reactive

(in response to errors).

1”Be liberal in what you accept, and conservative in what you send” [13]

103

2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)

2325-2944/20/$31.00 ©2020 IEEE
DOI 10.1109/DCOSS49796.2020.00027

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

Explicit, finite bounds: a low-power protocol specifies ex-

plicit, finite bounds on growth during decompression. Without

explicit bounds, buffers must be sized too conservatively. In

practice, implementations allocate smaller buffers and silently

drop packets they cannot decompress.

This paper is not the first to observe poor 6LoWPAN inter-

operability [14], but it is the first to identify this root cause. It

is the first to define design principles for protocols that allow

implementations to reduce code size and still interoperate. This

paper examines how these principles could be applied to a

low power protocol and evaluates the overhead of doing so. It

finds that applying these principles to 6LoWPAN promises

interoperability across a wide range of device capabilities,

while imposing a code size cost of less than 10%. In particular,

capability discovery requires an order of magnitude less code

than the code size difference at the extremes of our capability

spectrum, with minimal runtime overhead.

II. BACKGROUND

This paper focuses on protocols for low-power, low-cost

network devices, such as sensor networks or IoT devices, that

use ultra-low power, low-cost microcontrollers. The marginal

cost of additional resources, in terms of price and energy, is

significant. Radio communication often dominates the energy

budget: each transmitted bit consumes as much energy as

thousands of instructions.

A. Low Power Protocols

6LoWPAN is a set of standards on communicating IPv6

over low-power wireless link layers such as IEEE 802.15.4

and Bluetooth [1], [2], [15]. 6LoWPAN primarily specifies

two things: aggressive compression of IPv6 headers and how

to fragment/re-assemble packets on link layers whose MTU

is smaller than the minimum 1280 bytes required by IPv6.

6LoWPAN also specifies optimized IPv6 Neighbor Discovery.

6LoWPAN is critical to ensuring that IPv6 communication

does not exceed the energy budget of low power systems.

The interoperability IP provides is a goal in and of itself,

and so many different network stacks, including ZigBee and

Thread, have transitioned to supporting IP connectivity with

6LoWPAN. Over the past decade, most major embedded oper-

ating systems (OS) have transitioned to using 6LoWPAN [4]–

[8], [12]. IP connectivity allows systems to easily incorporate

new services and applications, and allows applications to

build on all of the existing Internet systems, such as network

management and monitoring.

B. Low Power Hardware and Operating Systems

Table I shows a variety of older and more recent low-power

platforms. Modern microcontrollers typically have 128-512 kB

of code flash. Applications often struggle with these limits

on code flash, and rarely leave code space unused. Embedded

systems are application specific, and use their limited available

resources toward different ends. Despite this, they still rely on

a small number of reusable OSes for basic abstractions.

Table I: Flash size varies widely across IoT platforms

IoT Platform Code (kB) Year
Tmote Sky 48 2004
Zolertia Z1 92 2013
Atmel RZRaven 128 2007
TI CC2650 128 2015
NXP MKW40Z 160 2015
SAMR21 XPro 256 2014
Nordic NRF52840 DK 512 2018
Arduino Due 512 2012

To support the highly constrained applications and devices

for which embedded OSes are used, embedded OSes must be

minimal. However, the manner in which they must be minimal

varies – some applications require minimal use of radio

energy, which can require code size consuming techniques

like compression, while others require tiny/low cost MCUs

without space for those mechanisms. To support this variety,

OSes have compile-time flags to include or exclude parts of

the system or networking stack [6]–[8]. Some systems take a

more extreme approach, dynamically generating the minimum

code to compile from the application itself [4]. Part of this

minimalist focus is that until application developers demand

certain features, OSes are likely to leave them out entirely

(a requirement often specified in contribution guides [7]).

These techniques are critical to ensuring a given OS can

support a wide range of embedded platforms, and influence

the implementation of network protocols.

III. LOW-POWER IP TODAY

“The Working Group will generate the necessary
documents to ensure interoperable implementations
of 6LoWPAN networks”

— 6LoWPAN Working Group Charter [3]

This section gives an overview of 6LoWPAN and its imple-

mentations. It finds that each implementation today includes

a different subset of the protocol. Source code shows this

is due to concerns with code size. Experiences with a new

implementation verify these concerns.

A. 6LoWPAN Summary

6LoWPAN [15] [1] [16] defines new header types to com-

press and structure IPv6 packets over low-power link layers.

Because link layers have different communication models and

address formats, each link layer has its own specification [1],

[2], [17]–[19]. In this paper we focus on 802.15.4, since it was

the original driver for 6LoWPAN and its dominant use case.

A standard IPv6 header is 40 bytes, and IPv6 requires

that a link layer support 1280 byte packets. Low-power

devices, however, have small MTUs (Bluetooth Low Energy,

for example is 27 bytes) and often send small data payloads

(e.g., 10 bytes). 6LoWPAN therefore provides mechanisms to

both fragment and heavily compress IPv6 packets. Because

addresses dominate the header, there are context-based and

context-free compression schemes for unicast and multicast

IPv6 addresses, as well as cases in which other fields within

104

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

Table II: 6LoWPAN Interoperability Matrix. Each implementation opts for a feature set that works best for its particular resource requirements.

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 � � � � �
6LoWPAN Fragmentation � � � � � �
1280 byte packets � � � � � �
Dispatch IPHC header prefix � � � � � �
IPv6 Stateless Address Compression � � � � � �
Stateless multicast address compression � � � � � �
802.15.4 16 bit short address support � � � � �
IPv6 Address Autoconfiguration � � � � � �
IPv6 Stateful Address Compression � � � � � �
IPv6 Stateful multicast address compression � � �
IPv6 Traffic Class and Flow label compression � � � � � �
IPv6 NH Compression: Ipv6 (tunneled) � � �
IPv6 NH Compression: UDP � � � � � �
UDP port compression � � � � � �
UDP checksum elision �
Compression + headers past first fragment � �
Compression of IPv6 Extension Headers ˜ ˜2 � �
Mesh Header � � ˜3

Broadcast Header �
Regular IPv6 ND � � � � ˜4

RFC 6775 6LoWPAN ND � �
RFC 7400 Generic Header Compression

˜ = Partial Support

IP and UDP headers may be compressed. In the most extreme

case, 6LoWPAN can compress the 40 byte header to 2 bytes;

for a 10 byte packet, over Bluetooth Low Energy, this is the

difference between a 400% overhead and sub-IP fragmentation

or a 20% overhead and no fragmentation.

B. Feature Fail

A 6LoWPAN receiver has much less flexibility than a

sender: it must be able to process any valid compression it

receives. Table II shows the receiver features supported by 6

major open-source 6LoWPAN stacks. Some, such as TinyOS,

are mostly developed and used in academia. Others, such

as ARM Mbed and Nest’s OpenThread, are developed and

supported commercially. Contiki and Contiki-NG sit some-

where in the middle, having both significant academic and

commercial use. Riot is an open-source OS with hundreds of

contributors for industrial, academic, and hobbyist use. Two

widely used open source stacks excluded from this analysis

are LiteOS [9] and Zephyr [10] — they are excluded because

LiteOS uses the same 6LoWPAN library (LWIP) used in

MBED-OS, and Zephyr simply imports OpenThread.

In almost all cases, each stack’s support for features is

symmetric for sending and receiving. There are significant

mismatches in feature support between stacks. These mis-

matches lead to deterministic cases when IP communication

fails. We verified these failures by modifying existing network

applications and testing them on hardware, using Wireshark to

verify packets were compressed and formatted as we expected

when receivers failed to decode packets. Table III lists the

exact software/hardware combinations we used for our code

analysis and hardware tests. Every implementation pair fails

for some type of packet which can be organically generated

by one of the stacks. This result may be surprising when

Table III: Hardware/Software combinations used

Stack Commit Hash Device
Contiki bc2e445817aa546c CC2650 LaunchXL
Contiki-NG 7b076e4af14b2259 CC2650 LaunchXL
OpenThread 4e92a737201b2001 Nordic NRF52840
Riot 3cce9e7bd292d264 SAM R21 X-Pro
Arm Mbed 4e92a737201b2001 N/A
TinyOS 4d347c10e9006a92 Atmel SAM4L

compared to prior work which demonstrated successful inter-

operability, such as [20]. However, this early success preceded

the release of RFC 6282, which increased the complexity (and

overhead) of 6LoWPAN.

In addition to the feature mismatches in Table II, IP commu-

nication between different stacks can fail due to disagreement

on buffer sizes. This happens when stacks make assumptions

about the maximum decompression which is possible from a

single link layer frame. The maximum header decompression

allowed by the 6LoWPAN specification is technically > 1200
bytes, as it allows packets filled recursively with compressed

IPv6 packets. Implementations place much lower limits to

avoid a requirement for multiple IPv6 size buffers which

would mostly sit empty. Some stacks send packets with more

header compression than the limit chosen by others, causing

IP communication to fail. For example, Contiki’s 38 byte limit

is exceeded by any packet with a maximally compressed IP

header and any UDP compression. Contiki merely seems to

have chosen a 38 byte limit because the limited Contiki stack

2Contiki-NG and OpenThread do not support mobility header compression
3TinyOS can receive the mesh header, but can’t forward or send mesh

header packets, preventing TinyOS from participating in route-under networks
4TinyOS supports only some of RFC 4861

105

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

Figure 1. 6LoWPAN stack code size for 6 open source stacks. The code size
varies by over a factor of 4, in part due to different feature sets. Compression
dominated the code requirements of each stack. TinyOS’s whole-program
optimization model precluded separating out subcomponents.

will not compress frames by more than that amount.

C. Why?

IP communication can consistently fail in low-power net-

works, despite the presence of succinct standards (RFC 6282

+ RFC 4944 is 52 pages) designed for low-power devices.

Worse, this failure is silent: the receiver will simply drop the

packet. Examining the documentation and implementation of

each stack, code size concerns motivated feature elision. Mbed,

Riot, and Contiki even provide compile-time flags to remove

additional features for particularly constrained use cases.

Figure 1 shows a break down of the code size of each

stack. Compression dominates the code size of 6LoWPAN

implementations, and in several cases 6LoWPAN’s size is

comparable to the whole rest of the IPv6 stack. The Contiki

and Contiki-NG implementations are significantly smaller than

the others in part because they elide significant and complex

features. The ARM Mbed IPv6 stack uses 45kB of flash. This

is nearly 1/3 of the available space on a CC2650, just for

IPv6: it does not include storage, sensors, the OS kernel,

cryptography, higher layer protocols, signal processing, or

applications.

Can a careful developer implement a leaner, fully-featured

stack? To answer this question, we implemented our own

6LoWPAN stack. Our open-source implementation is written

in Rust, for Tock, a secure embedded OS [21].

Our experiences support the comments and documentation

of the other stacks. We surpassed the size of the Contiki-

NG and Riot 6LoWPAN code before adding support for

recursive compression of IPv6 or the mesh and broadcast

headers. We noted several aspects of the protocol required

surprisingly complex code to properly handle. For example,

6LoWPAN requires IPv6 tunneled inside a compressed packet

to compress interior headers as well. This requires the de-

compression library to support recursive invocation, which

increases minimum execution stack sizes and makes tracking

buffer offsets during decompression more difficult. Refusing to

support tunneled IPv6 packets (e.g., Contiki) greatly simplified

the code. Another example: headers in the first 6LoWPAN sub-

IP fragment must be compressed, while headers in subsequent

fragments must not be compressed. Given that low-power

link layers have variable length headers, correctly determining

exactly where to fragment and what should be compressed

requires complex interactions between layers of the stack.

Finally, 6LoWPAN requires support for out-of-order reception

of fragments, potentially from different packets. This forced

our receiver to store and track state for a collection of received

packets, preventing reliance on a single global receive buffer.

The exercise of implementing a 6LoWPAN stack from the

ground up affirmed that code size concerns encourage feature

elision.

D. Why Does This Matter?

For any 6LoWPAN implementation, there exists a border

router implementation that can connect it to the broader

Internet. But this status-quo model of connectivity forces

vertical integration and fails to meet the original design goals

of 6LoWPAN, for two reasons.

First, a 6LoWPAN gateway can not know how to safely

compress packets for different nodes, unless it communicates

only with devices produced by the same vendor. As a result,

for a coverage area containing devices produced by 5 different

vendors, 5 gateways are required. If not for feature mis-

matches, a single gateway would suffice. Second, the current

situation significantly limits the potential for range extension

via mesh topologies. Most existing 6LoWPAN meshes rely

on “route-over” mesh routing at the network layer, which

requires that each node can at least partially decompress and

recompress IP headers when forwarding. Mesh-under routing

is no better, as implementation of the mesh header is not

universal (see table II). Poor interoperability worsens the

usability, range, cost, and efficiency of these networks.

IV. TRADITIONAL PRINCIPLES: NOT LOW-POWER

Over the past 45 years, the Internet community has coa-

lesced on a small number of design principles. Connectivity

through interoperability is a key premise of the Internet.

Principles such as layering and encapsulation support com-

posing protocols in new ways (e.g., tunneling), while the

end-to-end principle [22] allows building a robust network

out of an enormous and complex collection of unreliable

parts. The robustness principle asserts that implementations

should make no assumptions on packets they receive: bugs,

transmission errors, and even memory corruption can cause a

device to receive arbitrarily formatted packets. It also asserts

that an implementation must be ready to receive any and all

properly formatted packets. This aspect of the principle is often

attributed to John Postel as Postel’s Law, first written down in

the initial specification of IPv4: “In general, an implementation

should be conservative in its sending behavior, and liberal in

its receiving behavior.”

Protocols often have optional features (“MAY, SHOULD,

and OPTIONAL” in RFC language). Implicitly, due to Postel’s

Law, a receiver needs to handle either case. This scenario

creates an asymmetry, where sender code can have reduced

complexity but receiver code must be large and complex.

We need to think about low-power protocols differently.

They need new principles to help guide their design. These

106

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

principles need to embrace that there is no “one size fits all”

design, while defining how devices choosing different design

points interoperate. Flexibility needs to exist not only for

senders, but also receivers, without harming interoperability.

V. THREE PRINCIPLES

This section describes three protocol design principles

which prevent failures in low-power protocols. These prin-

ciples are absolutely necessary to ensure interoperable imple-

mentations in this space, and should be closely observed.

A. Principle 1: Capability Spectrum

A low power protocol should be deployable/installable on

devices which are at the low end of code and RAM resources.

Rather than require every device pay the potential energy costs

of fewer optimizations, a protocol should support a linear

spectrum of device capabilities.

This may seem familiar — the IP [23] and TCP [24]

specifications provide optional fields which can be used by

endpoints at their leisure; many non-standard HTTP headers

will be ignored unless both client and server support them;

TLS ciphersuite support is often asymmetrical. But this prin-

ciple is different. For those examples, no linear spectrum exists

— support for any particular capability is generally unrelated

to support for any other. Checking for support of any feature

requires explicit enumeration of each, making it impossible

to effectively compress such options. A non-linear spectrum

requires storing feature support for every neighbor in RAM,

or re-discovering capabilities on every exchange.

Low power protocols require simpler capability manage-

ment. A low power protocol should define a capability spec-

trum with a clear ordering in which especially resource

constrained devices can reduce code size or RAM use by

eliding features. Such a spectrum makes a protocol usable

by extremely low resource devices without forcing more

resourceful devices to communicate inefficiently.

This capability spectrum should be a linear scale. For a

device to support capability level N , it must also support

all lower capability levels. More complex configuration ap-

proaches (e.g., a set of independent options) might allow for a

particular implementation to be more efficient, picking the fea-

tures that give the most benefit for the least added complexity.

However, this sort of optimization makes interoperability more

difficult, as two devices must negotiate each specific feature

to use.

B. Principle 2: Capability Discovery

The second principle follows from the first: if different

capability levels exist, there should be a mechanism for two

devices to determine what level to communicate with.

The capability negotiation we propose here differs from

capability discovery mechanisms built for traditional systems,

such as IP Path MTU discovery or the Link Layer Discovery

Protocol (LLDP). IP Path MTU discovery relies on continual

probing until an acceptable value is discovered. LLDP requires

regular, detailed capability advertisements at a fixed interval.

The energy overhead of network probing or advertising is

unacceptable in most low power environments. Capability
discovery in low power networks should require no more than
one failure between any two neighbors, even if this slightly

increases the overhead per error. Proactive capability discovery

should be built into baseline communication required for

tasks like neighbor discovery or route maintenance. Further,

assumptions for traditional systems that prohibit storing per-

endpoint state do not apply, as nodes store information about

link-layer neighbors, not IP endpoints. This is needed because

low-power networks with route over topologies frequently

involve decompression and re-compression at each hop to

enable forwarding. Low power nodes have few neighbors,

so storing a few bits of state for each is feasible and can

significantly reduce the amount of radio energy needed for

communication. The code size cost of storing state is small

compared to the cost of complex compression mechanisms.

In a low power network with capability discovery, if two

devices wish to communicate, they default to the lower of

their supported capability levels. E.g. a level 2 and a level 4

device should communicate at level 2. One offshoot of this

principle is that it requires implementations have symmetric

capabilities for send and receive – no benefits can be realized

from an asymmetric implementation.

C. Principle 3: Explicit and Finite Bounds

Protocols must specify explicit and reasonable bounds on

recursive or variable features so implementations can bound

RAM use. This allow implementations to safely limit their

RAM use without silent interoperability failures. This also en-

sures that capability discovery is sufficient for interoperability.

The idea of imposing bounds is, on its own, not unique

to this space. TCP enforces a finite limit of 40 bytes for

TCP options which may be appended to the TCP header, as

does IPv4. DHCP allows for the communication of maximum

DHCP message sizes. In the space of low power Internet

protocols, however, this idea must be pervasive. Notably, the

original designers of a specification may not know exactly

what these values should be. This is not a new problem: TCP

congestion control, for example, had to specify initial con-

gestion window values. In this space, bounds should initially

be very conservative. Over time, if increasing resources or

knowledge suggests they should grow, then future devices will

have the onus of using fewer resources to interoperate with

earlier ones. The capability spectrum defined in the previous

two principles can be helpful in this regard.

VI. A PRINCIPLED 6LOWPAN

This section proposes how to apply the three principles in

the previous section to 6LoWPAN through specific modifi-

cations to the protocol. These modifications ensure that two

6LoWPAN devices can communicate even if they choose

different code size/energy efficiency tradeoffs. We refer to this

modified protocol as Principled 6LoWPAN (P6LoWPAN).

107

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

Table IV: Capability Spectrum

Capability Basic Description / Added Features
Level 0 Uncompressed IPv6 + ability to send ICMP errors

• Uncompressed IPv6
• 6LoWPAN Fragmentation (Fragment Header)
• 1280 Byte Packets
• Stateless decompression of source addresses

Level 1 IPv6 Compression Basics + Stateless Addr Compression

• Support for the Dispatch IPHC Header Prefix
• Correctly handle elision of IPv6 length and version
• Stateless compression of all unicast addresses
• Stateless compression of multicast addresses
• Compression + 16 bit link-layer addresses
• IPv6 address autoconfiguration

Level 2 Stateful IPv6 Address Compression

• Stateful compression of unicast addresses
• Stateful compression of multicast addresses

Level 3 IPv6 Traffic Class and Flow Label Compression

• Traffic Class compression
• Flow Label Compression
• Hop Limit Compression

Level 4 Next Header Compression + UDP Port Compression

• Handle Tunneled IPv6 correctly
• Handle the compression of the UDP Next Header
• Correctly handle elision of the UDP length field
• Correctly handle the compression of UDP ports
• Handle headers past the first fragment, when first

fragment compressed.

Level 5 Entire Specification
(all routers)

• Support the broadcast header and the mesh header
• Support compression of all IPv6 Extension headers

This application of our principles is not intended as a

suggestion that these changes be made immediately to 6LoW-

PAN, as modifying an established protocol is a complex task

very different from constructing new protocols. Instead, this

application is a tool for evaluating these principles, and an

example for how they should be applied.

A. Principle 1: Capability Spectrum

We propose replacing the large collection of “MUST”

requirements — the features in Table II—into 6 levels of func-

tionality. These “Capability Levels” are depicted in Table IV.

These levels prioritize features which provide the greatest

energy savings per byte of added code size, based off our

code size measurements and the number of bits saved by each

additional compression mechanism. They allow for a wide

range of code size/efficiency tradeoffs.

For example, addresses dominate an uncompressed IPv6

header. Level 0 devices only support compressed source ad-

dresses, while level 1 devices support all stateless address

compression. In one early design of this spectrum, Level 0

supported only uncompressed packets. However, this raises

a problem with ICMP error generation. If a node cannot

decompress the source address of a received packet, it cannot

send ICMP errors. ICMP errors are required for capability dis-

covery. Stateful compression depends on an out-of-band signal

to set up state, such that nodes only send statefully compressed

packets to nodes who also support it. Therefore decompressing

stateless source addresses is a minumum requirement.

The classes in this scale do not precisely reflect the current

feature support of the implementations described in Section III.

For example, Contiki supports UDP port compression (level

4) but does not support 802.15.4 short addresses (level 2)

or stateful multicast compression (level 3): following this

formulation, Contiki only provides level 1 support. If Contiki

supported 16-bit addresses, it would provide level 2 support. A

concrete spectrum such as the one above gives stack designers

a structure and set of guidelines on the order in which to

implement features. Based on our experiences developing a

6LoWPAN stack, we believe that if this scale existed as part

of the initial specification, implementations would have made

an effort to adhere to it.

One additional advantage of this spectrum is that it allows

for some future additions to the P6LoWPAN specification

without breaking interoperability between new and old imple-

mentations. For example, our scale does not include support

for Generic Header Compression [25] because none of the

open-source stacks we analyzed implement it. Despite this,

support for this RFC could easily be added as a new class

on this linear scale (as Class 6), and devices supporting it

would know to not use it when communicating with lower

class implementations.

This spectrum requires that a node store 3 bits of state for

each neighbor. Given that low-power nodes often store ten

or more bytes for each entry in their link table (link qual-

ity estimates, addresses, etc.), this cost is small. 6LoWPAN

already assumes that routers are more resourceful devices,

P6LoWPAN routers are required to be level 5.

B. Principle 2: Capability Discovery

We propose two mechanisms by which P6LoWPAN per-

forms capability discovery: neighbor discovery (ND) and

ICMP. Neighbor discovery [26] is analogous to ARP in IPv4:

it allows IPv6 devices to discover the link layer addresses of

neighboring addresses as well as local gateways. Devices use

neighbor discovery to proactively discover capability levels

and ICMP to detect when incompatible features are used. Of

the two, only ICMP is required. Neighbor discovery simply

allows a pair of differing nodes to avoid an initial ICMP error,

and allows for optimization of host-router communication

during neighbor discovery.

ICMP: We propose adding a new ICMPv6 message type—

P6LoWPAN Class Unsupported—which a device sends in

response to receiving 6LoWPAN features it does not under-

stand. This error encodes the device’s capability level. A node

receiving such an error updates its link table entry with the

capability level. In the future, any packets sent to that address

use at most the supported level.

Neighbor discovery: We propose adding an IPv6 ND option

that allows a device to communicate its capability class during

network association. This option would be included in Router

108

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

Solicitations and Neighbor Advertisements, and would allow

all devices that obtain link-layer addresses via ND to also

know how to send packets which that neighbor can receive.

When a node uses ND to resolve an IP address to a link layer

address, it learns the supported capability level as well as the

link layer address. This option minimizes the energy cost of

communicating capabilities. It is worth noting that RFC 7400

already employs a similar method for communicating whether

devices implement General Header Compression: adding such

an option is clearly viable. [25]

C. Principle 3: Provide Reasonable Bounds

Section III discussed two missing bounds which affect

6LoWPAN interoperability: limits on header decompression

and bounds on recursion when decompressing tunneled IPv6.

For P6LoWPAN, we propose that header decompression be

bounded to 51 bytes. This bound allows for significant RAM

savings in implementations that decompress first fragments

into the same buffer in which the fragment was originally

held. 51 bytes is a good tradeoff between RAM savings

and how frequently we expect such a bound would force

packets to be sent uncompressed. A 51 byte limit allows for

transmission of a packet containing a maximally compressed

IP header (+38 bytes), a maximally compressed UDP header

(+6 bytes), and one maximally compressed IPv6 extension

header (+7 bytes). This allows saving hundreds of bytes of

RAM, without jeopardizing interoperability. Packets requiring

more decompression than this are extremely rare, and could

be sent uncompressed. How rare? It is only possible to surpass

this limit if tunneled IPv6 is used or multiple IPv6 extension

headers are present. As of 2014, a real-world study of IPv6

extension header use found that 99% of packets with multiple
extension headers were dropped in the real Internet [27].

Second, we propose that headers for tunneled IPv6 should

not be compressed. The primary motivation for this feature

was from the RPL protocol [28], as discussed in Section III-B.

However, the fact that RPL must tunnel IPv6 in this way is

generally agreed to be a problem and a wart in its design that

should be avoided when possible [29]. This change allows

implementations to avoid recursive functions to decompress

these headers, and instead use simple if/else statements.

VII. EVALUATION

This section evaluates the costs of applying our principles

to 6LoWPAN. The principles are written such that interop-

erability comes by construction, and thus interoperability of

the modified protocol cannot be directly evaluated without

observing implementations written by different stakeholders.

But indirect evaluation is possible. Can a reasonable set of

capability levels provide a good range of implementation com-

plexity from which a developer can choose? Is the overhead of

the proposed mechanisms low enough to make them viable?

Are the savings afforded by a linear capability spectrum worth

the associated limitations? We find the incremental costs of

capability discovery mechanisms is small, adding 172-388

bytes of code in the worst case. We find that the capability

spectrum allows meaningful savings in code size and memory

usage. Finally, we find capability discovery has a low run-time

performance cost when a linear spectrum is used.

A. Implementations

First, we implemented the proposed P6LoWPAN on the

Contiki-NG 6LoWPAN stack, modifying it such that a

compile-time option determines which features of 6LoWPAN

are compiled. We selected Contiki-NG because it has the

smallest 6LoWPAN stack of those tested, so any overheads

the mechanisms introduce would be most pronounced. Our

changes required modifying 500 lines of code relative to

the head of the 4.2 release of Contiki-NG. We did not add

additional 6LoWPAN features which were absent from the

original Contiki-NG 6LoWPAN stack. Our code size numbers

therefore represent a conservative lower bound of the total

possible savings. All code sizes provided in this section are

compiled with the Texas Instruments CC2650 as the target.

We also added ICMP and ND support for capability discov-

ery. The updated stack responds to incompatible 6LoWPAN

messages with an ICMP error, and communicates its capability

level in Router Solicitation messages using the 6CIO prefix

originally defined in RFC 7400 [25]. It stores the capability

class of each node in its link table, and compresses IPv6

packets by the maximum amount supported by the destination.

Finally, we implemented a second modified 6LoWPAN

stack in Contiki-NG, which does not follow the recommen-

dation of using a linear capability spectrum. In this modified

implementation, each node can select any of the 6LoWPAN

features it chooses. We refer to this implementation as FLEX-

6LoWPAN. For this alternative policy, we isolated 26 features

of 6LoWPAN as single bit flags in a 32 bit bitfield. Thus,

FLEX-6LoWPAN stores and communicates capabilities using

4 byte objects. FLEX-6LOWPAN also supports the added

granularity required to maximally compress outgoing mes-

sages intended for a device supporting any specific combi-

nation of features. We did not add back in any 6LoWPAN

features which the Contiki-NG stack did not originally support.

This second implementation required modifying about 300

additional lines of code from the P6LoWPAN implementation.

B. Compile-Time Costs

Table V shows the size of the original Contiki-NG 6LoW-

PAN stack compiled at each possible capability level. Each

capability level adds between 0.25 and 1.05 kB of code, and

the spectrum enables implementations to cut the size of the

6LoWPAN stack by up to 45%. The code size cost of adding

capability discovery, using the P6LoWPAN implementation

with the linear capability spectrum, is shown in table VI.

Capability discovery adds 178-388 bytes, a fraction of the

size which implementations can save by supporting lower

capability levels. The code added for communication varies

across capability levels because the number of code paths for

ICMP error generation and compression changes.

Table VII presents the compile-time costs of using an

arbitrary bitfield instead of a linear capability spectrum by

109

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

Table V: 6LoWPAN code size of different capabilities levels in Contiki-NG.
The spectrum spans a nearly 100% increase in code size.

Capability Code Size (kB) Increase (kB)
Level 0 3.2 -
Level 1 4.2 1.0
Level 2 4.8 0.6
Level 3 5.1 0.3
Level 4 5.6 0.5
Level 5 6.2 0.6

Table VI: The cost of implementing capability discovery in Contiki-NG is
on average less than 5% of the total 6LoWPAN size; the maximum size

reduction from choosing a lower capability level is 10x the discovery cost.

Capability 6LoWPAN Code Size (kB)
Base w/Discovery Increase

Level 0 3.2 3.4 188 bytes
Level 1 4.2 4.4 260 bytes
Level 2 4.8 5.2 388 bytes
Level 3 5.1 5.4 340 bytes
Level 4 5.6 5.9 296 bytes
Level 5 6.2 6.3 172 bytes

comparing our P6LoWPAN implementation with our FLEX-

6LoPWAN implementation. The bitfield approach requires

32 bits per neighbor to store capabilities, instead of 3 bits.

More importantly, it complicates determining the allowable

compression between two nodes, as demonstrated by the code

size increase. The important takeaway here is that opting for

a less restrictive set of feature combinations mitigates much

of the savings provided by implementing capabilities. For

example, a FLEX-6LoWPAN device with the equivalent of

level 4 capabilities requires more code space than a level 5

P6LoWPAN device – the linear capability spectrum makes a

difference. The code size addition for FLEX-6LoWPAN is a

conservative lower bound, as we did not need to add checks

for handling 6LoWPAN compression features that Contiki-NG

does not support.

C. Run-time Performance

1) ND Cost: 6LoWPAN ND communication (RFC 6775) is

host-initiated and flows through routers (which must be level

5), and nodes store neighbor capability levels alongside link

layer addresses: thus there is no possibility of communication

failures due to capability mismatches. Therefore the cost of ca-

pability discovery in networks that use IPv6 ND is exclusively

that certain ND messages become longer (router solicitations

and neighbor advertisements are sent with an added capability

option). To put this added cost in perspective, Equation 1

shows the total link-layer payload bytes sent/received for ND

by a node in its initial wake-up period5. All variables not

affected by the use of capability discovery are assigned the

minimum possible value for the scenario discussed, so that

the overhead of capability discovery represents a worst case.

5This equation assumes the configuration described in RFC 6775 as the
“Basic Router Solicitation Exchange” – route over topology, 1 6LoWPAN
context, 1 on-link prefix, and the host requires address registration.

Table VII: Resource requirements for a 6LoWPAN stack in Contiki-NG
using a linear capability spectrum vs. using an arbitrary capability bitfield.

– Linear Spectrum Arbitrary Bitfield
6LoWPAN Code Size 5.9 kB 6.5 kB
RAM per neighbor 19 Bytes 22 Bytes

Table VIII: Total ND cost per eq. 1 for each implementation

RS NA C (Total ND Cost)
6LoWPAN 20 24 168 + 52 ∗N
P6LoWPAN 24 28 172 + 56 ∗N
FLEX-6LoWPAN 28 32 176 + 60 ∗N

C = Router Solicitation {RS}+ Min. IP Hdr {2}+
Router Advertisement {104}+ Min. IP Hdr {2}+
(Neighbor Solicitation {24}+ Min. IP Hdr {2}) ∗N+

(Neighbor Advertisement {NA}+ Min. IP Hdr {2}) ∗N
Address Registration Options in first NS {24}+
+ Address Registration Options in first NA {16} (1)

where:

C = Total link-layer payload sent/received for ND

N = # of endpoints requiring address resolution

Table VIII shows the values of RS and NA for each 6LoW-

PAN implementation, and the resulting total ND cost. Notably,

use of an arbitrary bitfield increases the size of the capability

option by 4 bytes, making use of existing ND options like the

6CIO option impossible. In both cases the additional bytes

added for capability discovery are small compared to the total

cost of ND(≤ 8% linear spectrum / ≤ 16% arbitrary bitfield).

2) ICMP Cost: In networks that do not use IPv6 ND the

cost of capability discovery is the energy/latency required for

one ICMP packet per failure between any two nodes. For

P6LoWPAN capability based failures can only happen in one

direction, so the size of this link-layer payload is:

Cicmp = Compressed IP Header Size + 4
For FLEX-6LoWPAN Cicmp = 48, because the recipient

does not know the capabilities of the sender, and thus must

send an uncompressed packet to ensure successful reception

of its own capabilities. This example reveals why use of an

arbitrary bitfield is so undesirable – the ability to compress

headers in ICMP errors can reduce overhead by a factor of 4

or more (in the common case of 8 byte compressed headers).

VIII. DISCUSSION AND CONCLUSION

A new generation of low-power devices face a connectivity

dilemma: Internet protocols are not designed for energy effi-

ciency, but compression and other energy saving adaptations

takes up precious code space. Device deployments specialized

for single-vendor local networks make trade-offs specific to

their application requirements. As a result, IP communication

110

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

between IP enabled devices fails. This problem is not specific

to 6LoWPAN — Iova et. al. recently noted similar issues in the

RPL protocol: “RPL has too large of a footprint for resource-

constrained devices, and requires all devices in a network to

run the same mode of operation, limiting heterogeneity” [30].

Part of the challenge is that some traditional protocol design

principles do not apply well to the low-power setting. We

present three design principles for low-power protocols that at-

tempt to remedy this. These principles explicitly acknowledge

the unique code space/energy tradeoffs of low-power devices.

Looking forward, considering this tension is critical for

protocol designers in this ecosystem of diverse hardware

capabilities and application tradeoffs. 6LoWPAN is not the

only low power Internet protocol — the low power space uses

its own routing protocols, address discovery protocols, and

application layer protocols [28], [31]. Additional protocols

will follow as the space matures. Many of these protocols will

be initially developed outside the IETF — Jonathan Hui was

a graduate student when he presented the first complete IPv6-

based network architecture for sensor nets [32], as was Adam

Dunkels when he created Contiki. We present a roadmap for

how these principles can reframe the discussion of how to

connect the next hundred billion devices to the Internet.

ACKNOWLEDGMENTS

We thank the anonymous IEEE DCOSS reviewers for their

helpful reviews, as well as the IETF 6lo working group, which

provided early feedback on this work. We also acknowledge

the support of the Intel/NSF CPS Security grant No. 1505728

(End-to-End Security for the Internet of Things), NSF CPS

grant No. 1931750 (Secure Smart Machining), the Stanford

Secure Internet of Things Project, and the Stanford System X

Alliance. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. Any opinions, findings, and

conclusions or recommendations expressed in this mate- rial

are those of the authors and do not necessarily reflect the

views, policies, or endorsements, either expressed or implied,

of the NSF or the U.S. Government.

REFERENCES

[1] J. Hui and P. Thubert, “Compression format for ipv6 datagrams
over ieee 802.15.4-based networks,” Internet Requests for Comments,
RFC Editor, RFC 6282, September 2011. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6282.txt

[2] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and
C. Gomez, “Ipv6 over bluetooth(r) low energy,” Internet Requests for
Comments, RFC Editor, RFC 7668, October 2015.

[3] T. Lemon, “Ipv6 over low power wpan wg charter,” IETF
WG Charter, IETF, Tech. Rep., March 2005. [Online]. Available:
https://datatracker.ietf.org/doc/charter-ietf-6lowpan/

[4] T. Alliance, “Tinyos,” https://github.com/tinyos/tinyos-main, 2018.
[5] F. Berlin, “Riot os,” https://github.com/RIOT-OS/RIOT, 2018.
[6] ARM, “Arm mbed os,” https://github.com/ARMmbed/mbed-os, 2018.
[7] S. Duquennoy, “Contiki-ng,” https://github.com/contiki-ng, 2018.
[8] A. Dunkels, “Contiki os,” https://github.com/contiki-os/contiki, 2018.
[9] Huawei, 2019. [Online]. Available: https://github.com/LiteOS/LiteOS

[10] Z. Project, 2019. [Online]. Available: https://github.com/zephyrproject-
rtos/zephyr

[11] Z. Alliance, “Zigbee 3.0,” https://www.zigbee.org/, 2018.
[12] Nest, “Openthread,” https://github.com/openthread/openthread, 2018.

[13] R. Braden, “Requirements for internet hosts - communication layers,”
Internet Requests for Comments, RFC Editor, STD 3, October 1989.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc1122.txt

[14] X. Huang, “Techical interoperability 6lowpan-coap report from interop
event,” http://www.probe-it.eu/wp-content/uploads/2013/09/Technical-
Interoperability-6LoWPAN-CoAP-Report.pdf, 2013, accessed: 2018-
02-01.

[15] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of ipv6 packets over ieee 802.15.4 networks,” Internet Requests
for Comments, RFC Editor, RFC 4944, September 2007. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4944.txt

[16] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, “Neighbor
discovery optimization for ipv6 over low-power wireless personal area
networks (6lowpans),” Internet Requests for Comments, RFC Editor,
RFC 6775, November 2012.

[17] A. Brandt and J. Buron, “Transmission of ipv6 packets over itu-t g.9959
networks,” Internet Requests for Comments, RFC Editor, RFC 7428,
February 2015.

[18] P. Mariager, J. Petersen, Z. Shelby, M. V. de Logt, and D. Barthel,
“Transmission of ipv6 packets over digital enhanced cordless telecom-
munications (dect) ultra low energy (ule),” Internet Requests for Com-
ments, RFC Editor, RFC 8105, May 2017.

[19] K. Lynn, J. Martocci, C. Neilson, and S. Donaldson, “Transmission
of ipv6 over master-slave/token-passing (ms/tp) networks,” Internet
Requests for Comments, RFC Editor, RFC 8163, May 2017.

[20] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, A. Terzis,
A. Dunkels, and D. Culler, “Contikirpl and tinyrpl: Happy together,” in
Workshop on Extending the Internet to Low Power and Lossy Networks
(IP+ SN), vol. 570, 2011.

[21] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and
P. Levis, “Multiprogramming a 64kb computer safely and efficiently,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
ser. SOSP ’17. New York, NY, USA: ACM, 2017, pp. 234–251.
[Online]. Available: http://doi.acm.org/10.1145/3132747.3132786

[22] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-
end arguments in system design,” ACM Trans. Comput. Syst.,
vol. 2, no. 4, pp. 277–288, Nov. 1984. [Online]. Available:
http://doi.acm.org/10.1145/357401.357402

[23] J. Postel, “Internet protocol,” Internet Requests for Comments, RFC
Editor, STD 5, September 1981. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc791.txt

[24] ——, “Transmission control protocol,” Internet Requests for
Comments, RFC Editor, STD 7, September 1981. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc793.txt

[25] C. Bormann, “6lowpan-ghc: Generic header compression for ipv6 over
low-power wireless personal area networks (6lowpans),” Internet Re-
quests for Comments, RFC Editor, RFC 7400, November 2014.

[26] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
discovery for ip version 6 (ipv6),” Internet Requests for Comments,
RFC Editor, RFC 4861, September 2007. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4861.txt

[27] J. Linkova and F. Gont, “Ipv6 extension headers in the real world,” Jul
2014. [Online]. Available: http://www.iepg.org/2014-07-20-ietf90/iepg-
ietf90-ipv6-ehs-in-the-real-world-v2.0.pdf

[28] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander, “Rpl: Ipv6 routing
protocol for low-power and lossy networks,” Internet Requests for
Comments, RFC Editor, RFC 6550, March 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6550.txt

[29] J. Hui, “Ip-in-ip (why, when, and overhead),”
https://mailarchive.ietf.org/arch/browse/roll, July 2010, accessed:
2018-04-08.

[30] O. Iova, P. Picco, T. Istomin, and C. Kiraly, “Rpl: The routing standard
for the internet of things... or is it?” IEEE Communications Magazine,
vol. 54, no. 12, pp. 16–22, 2016.

[31] Z. Shelby, K. Hartke, and C. Bormann, “The constrained
application protocol (coap),” Internet Requests for Comments, RFC
Editor, RFC 7252, June 2014. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc7252.txt

[32] J. W. Hui and D. E. Culler, “Ip is dead, long live ip for
wireless sensor networks,” in Proceedings of the 6th ACM Conference
on Embedded Network Sensor Systems, ser. SenSys ’08. New
York, NY, USA: ACM, 2008, pp. 15–28. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460415

111

Authorized licensed use limited to: Princeton University. Downloaded on September 10,2020 at 15:43:06 UTC from IEEE Xplore. Restrictions apply.

