
Blizzard: A Distributed Queue

Amit Levy (levya@cs), Daniel Suskin (dsuskin@u), Josh Goodwin (dravir@cs)
December 14th 2009

CSE 551 Project Report

1 Motivation

Distributed systems have received much attention in recent years. As the Internet increases in
size and scope, there is an increasing availability of large data sets as well as massive numbers
of concurrent users of a given resource or application. These are but two examples of tasks
that require more than a single node to handle. As such, the technical challenges of building
single, coherent systems that span multiple nodes have been consistently tackled and improved
upon by both commercial entities and research groups. Topics such as durability, consistency,
fault tolerance, and scalability are all current buzzwords, and each of these areas can be
implemented in various ways with various trade-offs. As such, our primary goal is to undertake
the creation of a distributed system addressing these various topics. Doing so will provide
concrete insights into the planning, construction, and interaction of these various components
of a distributed system.

One area where a distributed system could be necessary is the processing of large amounts of
data. Specifically, many computing tasks involve the use of a queue data structure to logically
enqueue data that needs to be processed and dequeue that data when it is ready to be
processed. Various producer/consumer models also use a logical queue to handle the
transmission of data between appropriate processes. E-commerce transactions and distributed
computation are two possible examples of tasks that may benefit from the use of a logical
queue, yet may involve workloads that reach proportions unmanageable by a single machine.
We propose and undertake to create Blizzard, a distributed queue that would be able to handle
these higher workloads. The design will involve considering the topics of fault tolerance,
durability, scalability, and concurrency while maintaining a single, logical queue amongst a set
of nodes.

2 Architecture/Implementation

In considering what programming language to proceed in, we took into account the experience
of group members with various languages and thought about proceeding in either Ruby or Java.
Ruby was decided upon, primarily because some of our initial design concepts may have
benefited from using the Chord algorithm, and one group member already had a working Chord
system in Ruby. Though we ended up abandoning Chord as an element of our final design,
Ruby has worked reasonably well for this project. In particular the experience of group
members with RPC's in Ruby has been beneficial in getting disparate nodes to function well with
each other.

In terms of physical deployment, Blizzard is designed to run on commodity machines connected
via any IP compatible network. For testing purposes we deployed Blizzard using CSE lab
machines as the various nodes in the system.

2.1 Goal Properties

Below we list and explain the goals which affect the design of our system, in descending order
of the goals’ levels of influence. The goals are the support of: fault tolerance, persistence of
enqueued data, concurrent operations, scalable performance, and preservation of FIFO order.

1



Fault Tolerance
The main goal of our system is fault tolerance, which means it should recover from failures
without losing data in the queue and without losing information about the structure of the
queue. To the user, a failure behind the scenes should appear as a request that returns an error
or as a momentary slowdown in performance, rather than a permanent loss of data.

Persistence
As mentioned above, data stored by Blizzard should persist through failures. Specifically,
unrecoverable machine failure and failure during recovery from other failures should not cause
data stored in the queue to disappear from the system, and neither should it cause information
about the structure of the logical queue to disappear. The percentage of nodes that can
simultaneously experience states of failure should be a configurable property of Blizzard, and is
controlled in our implementation by changing the factor of data replication.

Concurrency
As Blizzard is meant to serve requests from many clients simultaneously, it should handle
multiple concurrent enqueue and dequeue requests correctly. And by correctly we mean that
multiple requests should be able to return to their respective requesters as successes. When an
enqueue operation completes successfully, the data enqueued should be represented in the
logical queue, and retrievable by a future dequeue request. A successful dequeue operation
means that the data dequeued is no longer represented in the logical queue, and thus is not
retrievable by a future dequeue operation.

Scalable Performance
To justify the existence of Blizzard, we’d like it to be able to handle more operation requests per
unit of time than a queue which exists on a single machine, and we’d also like it to allow for
more elements to exist in a single queue than is possible using a queue which is contained on a
single machine. Maximum request throughput should also scale with the number of machines in
a Blizzard instance. However, we allow for throughput to be sacrificed while fault tolerance
mechanisms recover from failures.

Preservation of Order
As a final consideration, exact FIFO behavior is not expected of Blizzard. However, if a value U
enters the queue earlier than a value V, then U should have a higher priority than V to be
selected to be returned by a dequeue operation, while they both exist in the queue.

2.2 Implementation

Initially, two disparate approaches were considered: using a single master that maintains the
logical state of the queue, and using a peer to peer distributed system such that every node in
the system would be equal and state would be distributed and replicated amongst them.
Though the peer to peer approach avoids the downsides of a single point of failure and a single

machine limit in scalability, we decided to pursue the single master approach in order to
simplify the design and implementation of the system.

Thus, an overview of the single master approach is as follows. A single master node is in
charge of the logical queue structure and handles all enqueue/dequeue requests, assigning a
unique ID to every element in the queue. However, to enable high throughput, the actual data
does not pass through the master node. We feel the additional message throughput for the
master is worth the tradeoff of sending more messages back and forth through the client.
Rather, the master points clients to appropriate data nodes to store or retrieve data. In
addition, the master handles replication by monitoring data nodes and initializing duplication of
necessary data if a data node fails. More detailed discussion of the various components of
Blizzard is given below.

2



2.2.1 Planned Goal fulfillment

As mentioned above, we would like Blizzard to meet certain goal properties. We envision that
the single master approach could meet these properties in the following ways:

• Persistence and Fault Tolerance - The master handles data persistence in the presence
of data nodes that may fail by ensuring that a given item in the queue is physically
stored on multiple nodes at any give time, initiating replication as necessary to maintain
a given duplication threshold. The master allows queue persistence in the presence of
its own failure by logging all necessary queue metadata to disk, recovering from the log
when necessary.

• Concurrency correctness - The master maintains the entire logical queue structure, and
can thus ensure that any enqueue or dequeue of a given item ID is only performed
once, since it doesn't have to synchronize changes to the queue with any other party.

• Scalable Performance - As the master only handles queue metadata, the enqueue/
dequeue rate should be high, enabling multiple clients to transfer the actual item data
to/from data nodes simultaneously. As the data is distributed amongst many nodes,
the maximum size of the queue is also increased compared to a queue on a single
machine.

• Preservation of Order - Again, because the master - and only the master - maintains
the logical queue, priority order is generally preserved in the majority of cases.
Exceptions to this are discussed below.

2.2.2 Enqueue

The primary goal of the enqueue (and dequeue) algorithm is to ensure consistent state in the
midst of failures and concurrent requests. Though the enqueue process involves talking to
multiple nodes in the distributed system, the item is not inserted into the logical queue until all
previous required operations are successfully completed. Thus, an error in any previous step
has not affected the logical queue, and the queue is still in a consistent state. In other words,
to a client of the queue, an enqueue operation is only complete when the client receives
notification from the master that the data is now in the queue. The basic steps of the algorithm
are as follows:

1. A client asks the master for a node to enqueue some data on and an ID for the data.
2. Master assigns a unique ID to this item and logs that this ID is "pending for enqueue".
3. Client stores the (ID, data) pair on the node designated by the master.
4. Client notifies the master of successful store.
5. Master notes the success, replicates the data, and enqueues the item ID on the logical

queue, returning a "complete" to the node doing the enqueue.
6. If an error occurs or there is no success message from the client after some time out,

the pending enqueue is discarded and the master instructs the data node to delete the
data if it exists.

An important aspect of the above algorithm is that the actual data never passes through the
master. Thus, the master can quickly assign unique ID's to requesting clients, those clients can
transmit their data to different data nodes in parallel, and the master can quickly note the
success when a client notifies the master of success. The replication is also lightweight for the
master - the master merely instructs data nodes to replicate a given data item between
themselves, again sparing the master from dealing with any actual queue data transfer.

Consideration was given to the approach of having the client transmit data to n nodes before
reporting back to the master, where n is the replication threshold of the system. While this
would work, it could result in decreased performance if the available bandwidth between data
nodes is greater than the bandwidth from the client to the system. Such would be the case if

3



Blizzard was running on a cluster of machines in a given physical location, with remote clients
using the queue.

2.2.3 Dequeue

Like the enqueue algorithm, the dequeue algorithm seeks to ensure consistent state in the face
of a multi-step process. The queue should only complete a dequeue upon notification from the
client that the item is now in their control. The basic steps for a dequeue are as follows:

1. Client asks master where to dequeue.
2. Master removes the head ID from the queue and puts it on a data structure holding

pending dequeues.
3. Client requests the data associated with that ID from the node designated by the

master.
4. Client notifies master of successful dequeue.
5. Master removes item from pending data structure and instructs appropriate data nodes

to delete item data.
6. If the master is notified of a failed dequeue or is not notified of success after a time out,

the pending dequeue is undone and it moves the data item back into the queue.

One of the goals we desired to meet was ensuring that a given item is not removed from the
system until the master is notified by the client that the data was successfully retrieved. To
accomplish this without blocking for the entire dequeue process, a "pending dequeue" is used to
store item ID's that are currently being dequeued. Thus, if a dequeue fails (say the client
crashes after requesting a dequeue and before pulling the data), the item can be re-inserted
into the logical queue. This is one scenario that could corrupt to some degree FIFO ordering, as
item A could be reinserted into the queue after item B had already been dequeued, even if
originally A was enqueued before B.

2.2.4 Replication

The replication system is essentially a map of what data resides on which nodes at any given
time, a heartbeat monitor, and triggers to initiate replication and update those maps
appropriately. The purpose of the replication system is to ensure durability of data in the face
of node failures. By replicating a given queue item on n nodes, the simultaneous failure of n-1
nodes can occur without losing any data in the logical queue. This replication threshold is
tunable by the user of the queue depending on durability requirements. The replication system
is run by the master, on the same node as the master. The steps of the replication system are
as follows:

1. During an enqueue, the replication system marks what node is used to store the data
item.

2. As part of the enqueue process, the replication system instructs n-1 additional nodes to
grab the data from the initial node, where n is the replication threshold, keeping track
of this metadata as well.

3. All nodes send regular heartbeat messages to the replication system, currently set at
every 3 seconds.

4. If a node misses 3 heartbeat messages in a row (approximately 10 seconds), the
replication system initiates replication of all of the data items on that node by issuing
appropriate data copy instructions to data nodes still living. The actual queue item data
is always transferred amongst the data nodes, never through the master.

2.2.5 Master Logging

4



To allow for the master to recover from failures, changes to the logical queue and to state
information about the data nodes in the system are written to a log file before they take effect.
During recovery of the master node, Blizzard reconstructs the last good state by applying the
logged changes to the logical queue and other stored state.

3 Evaluation

We set up a Blizzard cluster on undergraduate lab machines with N data-nodes to qualitatively
evaluate our original goals as N increases and the number of concurrent clients increase. While
a measurement of throughput yielded expected results, the current implementation proved
immature for measuring order perseverance and persistence. Specifically, even a simulation
with high concurrency (hundreds of requests per seconds) and a very aggressive churn model
(one in which a cluster of 57 data-nodes had multiple failures every minute) resulted in no
observed data loss or change in ordering. However, beyond a certain threshold - a probability of
failure of about 1% per second per machine or 100 concurrent clients - the entire system
crashes. We think this is due to an exception in the RPC code that cascades through the
system, but we did not have enough time to confirm or fix this bug. Therefore we discuss the
theoretical properties of our implementation for order perseverance and persistence and the
empirical properties for throughput.

3.1 Order Perseverance

We define the observed order perseverance for a client to be the expected distance a client
would have to move out-of-order dequeued values in order to achieve the original enqueue
order of the values returned from Blizzard. To measure this we can assign a sequence number
to each value enqueued. Since normal queues are FIFO data structures clients in general expect
values dequeued early in time have lower sequence numbers than those returned later. Since
nodes fail, and therefore dequeues are aborted, we expect some clients to observe imperfect
ordering of dequeues. This can be modeled as a function of the average number of dequeue
operations that succeed before a failed dequeue is aborted and added back to the head of the
queue. Therefore, the order perseverance is a function of both the throughput of successful
operations and the probability of a dequeue operation failing. In our experiments we observed
no loss in ordering, however we were operating on very stable machines over a network with
virtually no packet loss. We believe the expected value in a real world deployment would be
small. If this is true, clients can obtain near-perfect ordering by buffering dequeued values.

3.2 Persistence

We model data persistence as a function of churn. For a particular value to be lost, all three
nodes storing it must fail within the same 20 second time period. If at least one is alive at the
end of the 20 seconds, the master will be able to re-replicate the value. Thus, the probability of
losing a particular value within a certain number of 20 second periods is the probability of losing
all three replicas during one of those periods. We model nodes as having a certain probability of
failing every second. This description yields three assumptions. First, the probability of a certain
machine failing each second is independent of the same in other seconds. Second, re-replication
occurs immediately at the end of the 20 second period and therefore failures between time
periods are independent. Finally, we assume machine failures are independent of other machine
failures and therefore do not account for such things as network partition or rack power loss.

The graph below shows the shape of the theoretical CDF of a data loss occurring over time. If
the probability of failure for a machine is 1% each second (i.e. expected lifetime is around 100
seconds), the probability of a losing a particular value after 7 hours is over 50%. If the
probability of a failure for a machine is 0.01% each second (i.e. expected lifetime is just under
3 hours - still very low) the probability of losing a particular value after 2 days is under 0.002%.

5



3.3 Throughput

To measure throughput we varied both the number of data nodes from 6 to 57 and the number
of clients operating concurrently from 1 to 64. Each client enqueued 100 values and dequeued
100 values. We calculated the average amount of time to perform 100 operations (enqueues or
dequeues) from all clients. We compare this result with the same experiment on a basic single
node queue implementing a similar remote interface. While the single node queue was faster by
up to a factor of 7, scaling the system both by clients and data nodes increased performance
significantly. At 57 data-nodes and more than 15 clients we observed times of around 0.65
seconds for 100 operations. This is about 150 operations per second which should be sufficient
for many use cases. The figure below shows times for 100 enqueue operations as a function of
the number of clients. Each line represents a different cluster size except the bottom flat line,
which represents the single-node queue we used for comparison.

6



7


	Blizzard:  A Distributed Queue
	1 Motivation
	2 Architecture/Implementation
	2.1 Goal Properties
	2.2 Implementation
	2.2.1 Planned Goal fulfillment
	As mentioned above, we would like Blizzard to meet certain goal properties.  We envision that the single master approach could meet these properties in the following ways:
	Persistence and Fault Tolerance - The master handles data persistence in the presence of data nodes that may fail by ensuring that a given item in the queue is physically stored on multiple nodes at any give time, initiating replication as necessary to maintain a given duplication threshold.  The master allows queue persistence in the presence of its own failure by logging all necessary queue metadata to disk, recovering from the log when necessary. Concurrency correctness - The master maintains the entire logical queue structure, and can thus ensure that any enqueue or dequeue of a given item ID is only performed once, since it doesn't have to synchronize changes to the queue with any other party.  Scalable Performance  - As the master only handles queue metadata, the enqueue/dequeue rate should be high, enabling multiple clients to transfer the actual item data to/from data nodes simultaneously.  As the data is distributed amongst many nodes, the maximum size of the queue is also increased compared to a queue on a single machine. Preservation of Order - Again, because the master - and only the master - maintains the logical queue, priority order is generally preserved in the majority of cases.  Exceptions to this are discussed below.
	2.2.2 Enqueue
	2.2.3 Dequeue
	2.2.4 Replication
	To allow for the master to recover from failures, changes to the logical queue and to state information about the data nodes in the system are written to a log file before they take effect. During recovery of the master node, Blizzard reconstructs the last good state by applying the logged changes to the logical queue and other stored state.


	3 Evaluation
	3.1 Order Perseverance
	3.2 Persistence
	3.3 Throughput



