
FriendStar: Extensible Web Applications with Information Flow Control

Amit Levy Ali Mashtizadeh
Stanford University

1 Introduction

Web applications are increasingly becoming the pri-
mary curators of personal and corporate data. Social
media applications like Facebook, LinkedIn and Twit-
ter have transformed how users communicate with each
other, while online document suites like Google Docs
or Docs.com have made online collaboration the norm.
Much of the success of such Web applications is due to
the flexibility in allowing third-party vendors to extend
user experiences. For example, Mint.com has been able
to leverage the availability of banking data online to pro-
vide users with better ways of managing and visualizing
their money.

However, today’s web application APIs provide too
little extensibility at too high a privacy cost for the next
generation of web application extensions. Commonly,
web application platforms find a middle ground between
restricting access to data by third-party applications and
requiring users to disclose private information: sacrific-
ing both extensibility and privacy. This is a fundamental
tradeoff in current architectures since third-party vendors
must be trusted completely with data they have access
to. For example, it is impossible for users to use an ex-
ternal photo editing application like Picnik while having
the guarantee that their private Facebook photos won’t
be misused. In the social web, data belonging to one user
might be accessible to an application installed by another
user, introducing even more complexity.

In this paper we describe FriendStar, a web platform
built in Haskell that uses information flow control [1]
(IFC) to enforce policies on untrusted code. IFC allows
users to specify policies in terms of where data can flow
instead of what code is privileged to access it. For ex-
ample, Alice can allow Bob to access her photo albums,
while preventing any of Bob’s applications from leaking
her photos to other users or external servers. To enforce
these policies, every object is labeled, allowing the sys-
tem to verify information flow is not being violated at the

boundaries, e.g. the file system, network or database.

We use the Labeled IO (LIO) library for Haskell [2].
This packages provides a framework for information
flow control in Haskell at the library level, with no mod-
ifications to the compiler. Using LIO we can build a
trusted authentication mechanism, leaving actual appli-
cation implementation to untrusted code, including any
third party extensions.

In order to demonstrate our system we built an exten-
sion called Pleaserobme that attempts to steal a users lo-
cation and leak it to an external server. FriendStar’s en-
forcement of IFC policies guarantees that this extension
is prevented from leaking data. Information leakage is
only permitted for those users who explicitly allow it.

2 The FriendStar Application

We used a prototype application platform called Friend-
Star to help guide our design of an IFC system for the
Web. FriendStar is similar in principle to Facebook [3].
End-users have profiles containing personal information
such as their name, picture and current city. Some of the
information on a user’s profile is public (e.g., their name
and picture), while some is private (e.g., current city) and
thus should only be shared with certain other users and
should not be leaked to the network. Users also have a
‘’wall” on which they, or other users, can post messages.
Users can connect to each other by claiming each other
as ‘’friends” – a symmetric relationship implying they
would like to share, e.g., private information.

FriendStar allows developers to enhance it by writing
extensions. This code is compiled into the FriendStar
binary, but is obviously untrusted. The main contribution
of FriendStar is demonstrating that such extensions can
be given full access to user data while ensuring that they
do not violate the users privacy policies.

1



FriendStar Platform

...

Labeled
MongoDB

Labeled 
HTTP Server

Please
Rob Me

Other
Apps

Figure 1: The FriendStar platform consists of a labeled
HTTP library and labeled MongoDB database for persis-
tent storage. The users privacy policy is enforced even on
the untrusted third party applications such as please rob
me.

3 Design

Our design focuses on a small trusted computing base
built on top of several existing Haskell libraries. Fig-
ure 1 shows the general architecture diagram. We have a
Labeled MongoDB database and a labeled HTTP server
that form the foundation of our social networking plat-
form. Our implementation uses IterIO for reading and
writing to sockets and for parsing HTTP requests, LIO
as the basis for enforcing information flow control, blaze
for building HTML views and MongoDB bindings to
communicate with the database.

3.1 DC Labels

For our labeling scheme we chose DC Labels [4] for their
flexibility in expressing IFC policies, and because an im-
plementation already exists for the LIO library. A DC
Label is composed of secrecy and integrity components.
Each component, in turn, is a conjunction of disjunctions
of basic types (e.g. Haskell strings).

With disjunctive labels we found we were able to eas-
ily express the policies we wanted for our system in
terms of labels. For example, denoting that a user’s
friends are able to read her current location is as sim-
ple as creating a disjunction of the usernames of those
friends.

In FriendStar we chose canonical, human-readable
names for the labels of entities. For example, each sub-
component of the application has a corresponding label
named by it’s URL prefix and users have corresponding
labels named by their usernames.

3.2 HTTP Server
We use the IterIO HTTP library to build a trusted HTTP
server. At the core, the HTTP server parses incoming re-
quests and passes them to the untrusted components, en-
forcing IFC at the boundary between untrusted code and
the network. To this end, our library adds user authen-
tication and integration with LIO on top of the existing
IterIO library.

3.2.1 User Authentication

Authentication must be handled by a trusted component
in our system, as the label of the TCP connection to the
client browser is set based on the users credentials. We
chose the Basic Access Authentication scheme. With
every request, the client sets the HTTP header “WWW-
Authenticate” to a base-64 encoded authentication string
of the form “username:password”. Typically web servers
authenticate users using a database or .htpasswd file. In
FriendStar we chose the latter approach. If the header is
not present in the HTTP request, the server responds with
status code 401 (unauthorized), signaling to the user they
must authenticate. The actual interface exposed to the
user is browser specific, but typically browsers present
a dialog box prompting the user to for a username and
password.

We chose HTTP Basic Authentication for simplicity,
but our library could trivially be expanded to support
Digest Authentication, or even session-based authentica-
tion through HTML forms. For session based authenti-
cation it may be useful to allow untrusted components of
the site to serve and parse the HTML forms – for exam-
ple, to allow for a variety of login interfaces, or simply to
minimize the trusted base. This could be accomplished
by assigning a unique label to every HTTP request from
unauthenticated users, effectively preventing untrusted
code from writing any data from the request (e.g. the
password) to the database or file system, or leaking it to
the network.

3.2.2 Integrating with LIO

With IterIO it is trivial to construct an Iter and Onum
pair corresponding to the input and output of a socket,
respectively. However, the types of these are:

• Iter L.ByteString IO ()

• Onum L.ByteString IO L.ByteString

This means that they are allowed to perform opera-
tions in the IO monad, which is unacceptable for un-
trusted code. Instead, we want an Iter and Onum that
are allowed to perform operations in the LIO monad. We
accomplish this by wrapping both with trusted code. For

2



example, we consumes output from the Onum, execute
any IO actions with ioTCB (e.g. reading from the under-
lying socket), and use the output to construct an Onum
that artificially wraps the LIO monad.

We use the trusted code wrapper as an opportunity to
set the clearance, privilege, and initial label of the un-
trusted code. We use the logged in user’s label for the
clearance, a prefix of the HTTP request path for the priv-
ilege (e.g. an application that lives under /profiles/ will
get a privilege labeled “profiles”), and set the initial label
to public.

Once the LIO environment is set up, we can safely
execute the untrusted code. Untrusted handlers have
the type signature HttpReq () → Iter L.ByteString DC
(HttpResp DC), so we can pass it the parsed HTTP re-
quest (after scrubbing any sensitive authentication data)
and fuse it with the request body to get back an HttpResp
DC. We check that the label after executing the untrusted
code can flow to the user’s browser, and either send the
response to the client, or respond with an error status
(500) if information flow would be violated.

3.3 Database

Our database layer is trusted, and wraps the Haskell
MongoDB library with an easy interface for accessing
deserialized data types and enforces IFC policies on user
data. In particular, the database layer exports a set
of queries such as findProfileByUsername that fetches
BSON from the database, deserializes it into application
data types and applies labels to individual columns in the
data type based on a set of pre-specified policies.

We do not yet protect writes to the database, however
our design supports it. Database write protection can be
implemented by allowing the application to raise it’s in-
tegrity such that it could write to a user’s data only under
certain conditions (for example, only if the logged in user
is making the request).

3.4 Network

Some components of the application may need to com-
municate with external network services, but cannot be
given direct access to IO, we implemented a labeled
HTTP library. Our library allows untrusted code to ex-
ecute arbitrary HTTP requests so long as they have not
viewed labeled data. The implementation checks the cur-
rent label before executing any HTTP action, and aborts
if it cannot flow to the public label. Therefore, untrusted
code can only leak sensitive information to the network
if it has privileges to declassify it.

While we do not currently support such functionality,
it would be possible to let users specify particular HTTP

endpoints (e.g. a URL or domain name) to which un-
trusted code should be allowed to leak sensitive data.
For example, users might want to allow untrusted code
to leak their current city to the Google Maps service,
located at maps.google.com. This could be enabled by
adding the domain or URL to the disjunction of the la-
bel of the sensitive data, and modifying our network li-
brary to verify the flow satisfies this new, more lenient
constraint. For example, the following flow is valid:
jdoe∨maps.google.comv maps.google.com

3.5 REST Controller
We structured FriendStar into a set of RESTful style con-
troller modeled after Ruby on Rails. This structure is im-
plemented entirely in untrusted code – new components
of FriendStar need not follow this pattern. Our RESTFul
controllers are instances of a class that requires a method
for each RESTful action (index, show, create, destroy,
update, edit and new). These methods return a RestCon-
trollerContainer monad, which is a transformation of the
State and LIO monads, which holds in it’s state the Http
request and response.

Figure 2 shows an example of what an instance of this
class might look like. Notice that the internals of IterIO
are abstracted away. ToyController uses methods such
as redirect and params to get or transform the state of
the Monad. We have baked in such methods that we
found useful, but developers can easily extend their ap-
plications with more. Our RestController module also
exports methods that add the appropriate routes to an Ite-
rIO route map. We implemented the entire FriendStar
web application using instances of this class, and found
that developing within this model was much faster than
writing raw IterIO HttpRequestHandlers.

4 Results

We built an example untrusted extension called Pleaser-
obme, which we loosely based on a real Twitter applica-
tion of the same name [5]. This extension allows users
find the current city of other users (or themselves) on
FriendStar. Given a valid FriendStar username, Pleaser-
obme will display that user’s current city if the client is
allowed to see it (otherwise the extension will timeout as
it will have violated information flow).

In addition to displaying this sensitive information to
the client, Pleaserobme also attempts to leak it to an ex-
ternal server. Since it cannot execute IO actions, its only
option is to use the labeled networking library. However,
because it has to raise its label in order to read the current
city value, the networking library will reject the request
to communicate with an external server, thus thwarting
the attempt to leak information to the network.

3



newtype ToyController = ToyController Int

instance RestController ToyController where
restIndex self = do
toys <- lift $ allToys
render "text/html" $ toJson toys

restShow self toyId = do
toy <- lift $ findToyById toyId
render "text/html" $ toJson toy

restUpdate self = respondWith 500 $
"Updates not allowed"

restCreate self = do
let newToy = toyFromParamList params
toy <- lift $ createToy toy
redirect "/toys"

Figure 2: Example RESTful Controller. Imports are ex-
cluded for brevity.

Users are able to grant permission to the extension to
leak their information. We accomplish this by allow-
ing users to add the extension to the disjunction forming
the label for their current city. This allows Pleaserobme
to declassify that user’s current city using the privilege
given to it by the HTTP library. Once the information
has been declassified it can successfully be leaked to the
network.

5 Related

There are countless examples of extensible web applica-
tion. However, to our knowledge, all such systems take
a fundamentally different approach than ours. As a rep-
resentative example, the Facebook Developer Platform
allows external servers to retrieve private user data given
explicit permission from the user (or sometimes one of
their friends or friend-of-friends). This approach forces
the developer extensions to be totally trusted as they gain
complete control over the data. In FriendStar we choose
to execute untrusted code on trusted servers, allowing us
to enforce security policies throughout the lifetime of the
data.

Jif [6] provides language level decentralized informa-
tion flow control. In Haskell though we are able to en-
force the same programmatic behavior by just extending
the language through a library (LIO). Jif also has the lim-
itation that it assumes only static labels and no dynamic
labels.

Asbestos [7] and HiStar [8] are two operating systems
that implement decentralized information flow control to
enforce policies on applications. Unlike our implemen-
tation that relays on LIO it can only enforce policies at a
higher granularity. An application that has a user’s data

would have to fork and exit when it is done, otherwise
it would contain tainted data. Our system typically does
not require processes to fork and exit, as it works at the
language level.

6 Conclusion

We presented FriendStar, an extensible web application
made up of untrusted components. FriendStar shows that
information flow control can be leveraged to allow secure
execution of untrusted code over sensitive data on a web
platform. We demonstrated this property with an exam-
ple untrusted extension which attempts to leak sensitive
user data to the network. Finally, we’ve argued that the
security policies in such a system map naturally to users
actual privacy concerns. Our code is available for down-
load at http://github.com/alevy/friendstar

7 Acknowledgements

We thank Deian Stefan for his help understanding the
LIO library and designing the database model, David
Mazières for writing the IterIO and LIO library, David
Mazières and Bryan O’Sullivan for teaching a wonder-
fully informative class, and James Blake for fueling late
night writing with monotonous music.

References

[1] A. C. Myers and B. Liskov, “A decentralized model for
information flow control,” in In Proc. 17th ACM Symp. on
Operating System Principles (SOSP), pp. 129–142, 1997.

[2] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,
“Flexible dynamic information flow control in haskell,”
in Proceedings of the 4th ACM symposium on Haskell,
Haskell ’11, (New York, NY, USA), pp. 95–106, ACM,
2011.

[3] M. Zuckerburg, C. Highes, D. Moskovitz, and E. Saverin,
“Facebook.com.”

[4] D. Stefan, A. Russo, and J. C. Mitchell, “Disjunction cat-
egory labels,” in Proceedings of NordSec 2011, NordSec
’11, 2011.

[5] B. Borsboom, B. v. Amstel, and F. Groeneveld, “Please rob
me.”

[6] A. C. Myers and B. Liskov, “Protecting privacy using the
decentralized label model,” ACM Transactions on Software
Engineering and Methodology, vol. 9, p. 2000, 2000.

[7] P. Efstathopoulos, M. Krohn, S. Vandebogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazires, F. Kaashoek, and
R. Morris, “Labels and event processes in the asbestos op-
erating system,” in In Proc. 20th ACM Symp. on Operating
System Principles (SOSP), pp. 17–30, 2005.

4

http://github.com/alevy/friendstar


[8] N. Zeldovich, S. Boyd-wickizer, E. Kohler, and
D. Mazires, “Making information flow explicit in
histar,” in Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation,
pp. 263–278, USENIX Association, 2006.

5


	Introduction
	The FriendStar Application
	Design
	DC Labels
	HTTP Server
	User Authentication
	Integrating with LIO

	Database
	Network
	REST Controller

	Results
	Related
	Conclusion
	Acknowledgements

