
Bridging the Security Gap with Decentralized
Information Flow Control

Adam Belay, Andrea Bittau, Dan Boneh, Pablo Buiras*,
Daniel Giffin, Amit Levy, Ali Mashtizadeh, David Mazieres,
John Mitchell, Alejandro Russo*, Amy Shen, Deian Stefan,

David Terei, Edward Yang, Nickolai Zeldovich†

Stanford, †MIT, *Chalmers



Project Goal

Make it possible for programmers
who are not security experts to build
secure web applications



Architecture

• Server: Language framework for building secure apps

• Hails, LIO

• Client: Sandboxing and browser security

• Starlight, Dune



The Server Side Today: Web Apps

• Most apps structured around MVC
(Model-View-Controller)

• Rails, Django, Struts, .NET, others. . .

• Useful for compartmentalizing development



Why is the Web so &$@*ing Broken?!



The Server Side Today: Web Apps

• No notion of security policies

• Ad-hoc security checks throughout applications

• Easy to forget a check (e.g. GitHub mass assignment
volnerability)

• Extracting the policy requires looking at the whole
application

• Often breaking MVC abstraction



Minding the Gap

Lots of research on secure systems

Jif, HiStar, Asbestos, Nexus, Ur/Web, . . .

Technologies not adopted

• Modify entire stack

• Not approriate for dynamic systems like the web

• Policies are hard to write

• No guide for structuring applications



Hails: A web platform framework

• Hails targets web platforms, not just apps

• All code is untrusted and potentially malicious

Goals

• Suitable for web platforms

• Usable by web developers

• Easy to write policies
• Easy to write the rest of the app

• Deployable today

• Change as little of the stack as possible



The Server Side Today: Web Platforms

Jen’s
Browser

iApp.biz Servers PlatformX Datacenter

Give me Jen’s profile, please

Aalyah Zen Lopez



Current Solution



Change the hosting model

• Developers host apps on in their own datacenters

• Platforms enforce security contractually (e.g. terms of
service)

Hails: A new approach

• Platforms host apps on their own hardware, on top of Hails

• Use information flow control to ensures apps obey
security policies



Case Study: Gitstar.com



Adding Policy to MVC

• New paradigm: Model-Policy-View-Controller

• Policy specified independantly
• No policy in the Model, View or Controller

• Hails has two types of third-party code

• Model-Policies (MPs)
• Provide data model and policy
• View-Controllers (VCs)
• Web server executables that link to MPs



Trust Model in Hails

• View-Controllers are completely untrusted

• Includes most of the interesting functionality, like UI

• Model-Policies must only be trusted with the data they
define

• Users have to trust that they set good policies.

• Hails uses information flow control (IFC) do enforce
policies on data models, end-to-end



MPs and VCs in Gitstar

• The Gitstar platform provides:

• MPs for projects and users
• A VC for managing projects and users

(http://www.gitstar.com)

• Third-party authors:

• Source code browser
• Wiki
• Follower app
• Their own MPs

• In fact, nothing special about the Gitstar VC

http://www.gitstar.com


MPs and VCs

A closer look. . .



Model Policy

A document oriented data-store:

• Documents are stored in collections, stored in databases

• Semi-structured schema with flexible data-types

Name Value

user jen

email jen@
friends [alice, bob, … ]

Name Value

user jen

email jen@
friends [alice, bob, … ]

Field Value

user Jen

email jen@aol.com

friends [Alice, Bob]

users collection:



Model Policy

• Web app data already encodes policy

• Function from a document to a policy

Data model: document-oriented
   ➤  Collection: set of documents
   ➤  Document: set of field-value pairs

 

Model-Policy (MP)

Name Value

user jen

email jen@
friends [alice, bob, … ]

Name Value

user jen

email jen@
friends [alice, bob, … ]

Field Value

user Jen

email jen@aol.com

friends [Alice, Bob]

users collection:



collection "users" $ do

access $ do

readers ==> anybody

writers ==> anybody

field "user" key

document $ \doc -> do

readers ==> anybody

writers ==> ("user" „from„ doc)

field "email" $ labeled $ \doc -> do

readers ==> ("user" „from„ doc)

\/ fromList ("friends" „from„ doc)

writers ==> anybody



View Controller

• A VC is a web request handler

• Implement UI and external API

• Source code viewer, RSS feed, Wiki editor,. . .

• Handle all data persistence through MPs

• Low barrier, since new VCs can reuse existing MPs

Bugs in VCs are manifested as broken features – never as
vulnerabilities



 GitStar Project MP         +

Code viewer VC
Wiki VC



Goals

• Suitable for web platforms

• Usable by web developers

• Deployable today



Evaluation: Usablility

√
MPVC simplified reasoning about security

√
Hails rendered

common security bugs futile

χ Need scaffolding tools

χ Writing policies is hard.
? Better with new policy DSL



Evalutaion: Performance

0

0.25

0.5

0.75

1

Pong Table DB Read DB Write

N
or

m
al

iz
ed

 R
eq

ue
st

s/
Se

co
nd

s

Hails
Sinatra
Apache PHP

47.6K R/s

479 R/s

1.1K R/s
1.4K R/s



Limitations / Present & Future Work

• Confined to Haskell

• Now - cjail
• Future - Dune

• Covert channels

• Internal timing closed ([ICFP 2012])
• External timining - mitigation
• How much to mitigate?
• More work to do. . .
• Cache-based timing attack



tl;dr

• Current platforms: functionality vs. privacy

• Hails platforms guarantee security end-to-end

• Host apps on platform
• Make policy explicit
• Enforce policy with information flow control

$ cabal install hails

http://gitstar.com http://hails.io/


