

Microcontrollers Deserve Protection Too

Amit Levy

with:
Michael Andersen, Tom Bauer, Sergio Benitez, Bradford Campbell, David Culler,

Prabal Dutta, Philip Levis, Pat Pannuto, Laurynas Riliskis

Microcontrollers

Microcontrollers

● Tightly integrated hardware
– A single IC computer (memory, CPU, I/O peripherals)

● Typically:
– Small amount of code memory (<= 512KB flash)
– Small amount of RAM (1 – 128KB)
– Low speed CPU (<<< 80MHz)
– Low power consumption (μA sleep currents)
– Little/no hardware support for isolation

Tock*: An Operating System for Microcontrollers
● Designed for multi-programming microcontrollers
● Strict application/kernel boundary
● Written in Rust

– Safe but low-level programming language
– Allows compile guarantees on contributed kernel code

● Leverage new hardware features, e.g.
– Memory Protection Unit (MPU)
– Faster processor speeds
– DMA, many more I/O peripherals, etc...

* Codename

Today's Microcontroller “Operating Systems”

● “Operating System”
– Hardware abstraction layer
– Libraries for complex/common tasks

● e.g. 6lowpan, Bluetooth, virtual timers etc'

– No isolation

Outline
● Why?

– New use cases
– New developers
– New hardware

● What?
– Untrusted application sandboxing
– Protection from drivers/kernel modules

● How?
– Hardware sandbox for apps
– Language-level sandbox for drivers
– Zero dynamic allocation in the kernel

Outline
● Why?

– New use cases
– New developers
– New hardware

● What?
– Untrusted application sandboxing
– Protection from drivers/kernel modules

● How?
– Hardware sandbox for apps
– Language-level sandbox for drivers
– Zero dynamic allocation in the kernel

New Use Cases

● Ubiquitous computing
– Fitness bands, medical devices, “smart home”

● Programmable platforms
– Smart watches
– Drones
– Undoubtedly more to come

New Developers

Cost + tools make hardware
development more accessible
– Small teams/startups

● Iterative development
process

● Rapid deployment

– Hobbyists
● One off applications, modding

– Not necessarily embedded
systems experts

Old Hardware - telosb

● Based on MSP430
– 16-bit
– 8Mhz, 10Kb RAM, 48Kb code

● 802.15.4 radio
● Power draw

– 5.1 μA idle
– 1.8mA idle

New Hardware
● Based on ARM Cortex-M

– 32-bit
– 40Mhz, 64Kb RAM, 128Kb code

● 802.15.4 and Bluetooth radios
● Power draw

– 2.3-13.0 μA idle
– 8 mA active
– < 25% on realistic workloads

● Many more peripherals:
– USB, several USARTS, SPIs and I2Cs,AES

accelerator…

● Memory Protection Unit (MPU)

Why a new Operating System?

● New Use Cases
– Software updates on my medical device
– Third-party apps

● New Developers
– Non expert developers building highly

personal/sensitive products

● New Hardware
– Different power profile → different tradeoffs
– Some hardware support for multi-programming

Why a new Operating System?

Outline
● Why?

New use cases
– New developers
– New hardware

● What?
– Untrusted application sandboxing
– Protection from contributed drivers/kernel modules

● How?
– Hardware sandbox for apps
– Language-level sandbox for drivers
– Zero dynamic allocation in the kernel

Third-party apps

● Dynamically loadable
● May run concurrently
● Example: Pebble watch

– 3rd party app ecosystem
● E.g. pedometer, 2-factor auth, weather info

– Must protect sensor data as well as other app data

● Potentially malicious threat model
● Need to sandbox against arbitrary behavior

Contributed Drivers
● E.g. storage system, network stack, LCD screen, sensors
● Written by the product/platform developer or non-core kernel developers
● Need low-latency access to hardware

– Bitbanging devices, latency sensitive network stacks etc

● Not modeled as malicious, but potentially buggy
– Shouldn't bring down the system

● “If I upgrade this flash driver, will my glucose monitor give me bad
results?”

● Compiled into the kernel
– Need compile-time guarantees

What Protections does Tock Provide?

● Applications:
– Isolated from each other and from the kernel
– A buggy application cannot bring down the rest of the system

● Drivers:
– Can reason about behavior at compile time
– (Relatively) easy to write non-buggy code with help from the

compiler
– Buggy driver cannot interfere with other critical code
– Model ownership of hardware resources explicitly

Outline
● Why?

New use cases
– New developers
– New hardware

● What?
– Untrusted application sandboxing
– Protection from drivers/kernel modules

● How?
– Hardware sandbox for apps
– Language-level sandbox for drivers
– Zero dynamic allocation in the kernel

Tock: Overview

● Hardware separation between apps and kernel
(MPU)

● Kernel written in safe language (Rust), apps written
in any language
– C, Lua, Rust, etc
– Helps balance safety with low-level access and ease of

use.

● Drivers written in language-level sandbox
– Unique and exclusive access to underlying hardware

Tock: Architecture

Rust

Syscall Interface

Kernel Core

Hardware Sandbox

Device Drivers
(Rust language sandbox)

App1.c
App1.lua

App1.rs

MPU: Hardware App Sandbox

● Enforce read/write/execute on applications for different
portions of memory

● No virtual addressing but much finer grained than MMU
● On Cortex-M4:

– Up to 64 different regions
– Region size between 32B and 4KB

● Can isolate application memory from each other
● Can allocate sensitive kernel data structures in “application

space”
● Can expose specific peripherals directly to applications

MPU: Hardware App Sandbox

Code

Memory Mapped I/O

Second App Memory

Kernel Stack

First App Memory

App code

App specific
Kernel memory

Peripheral

low address

high address

Language-level Sanbox: Goals

● Device drivers cannot interfere with each other
– E.g. a network stack cannot muck with readings from a

glucose sensor

● Single threaded execution model
– Simpler to write correct code
– Kernel/hardware does not have to worry about

concurrent access bugs
– Much faster processing speeds make this feasible

within time contraints

Language-level Sanbox: Why Rust?

● No runtime system
– Not garbage collected, zero-cost safety abstractions

● Memory Safety
– Elimates a large class of bugs: dangling pointers, double-frees,

pointer arithmetic errors, etc

● Type Safety
– Can expose low-level hardware interfaces through safe interfaces

● Strict Aliasing
– Unique references and read/write references obviate many

concurrency bugs

Zero Dynamic Kernel Allocation

● Embedded OSs generally avoid dynamic allocation for
good reason
– Hard to determine in the lab if something will crash in the

field
– No swapping, so no way to deal with memory overflows

● But problematic with dynamically loaded applications
– A new app may use drivers differently
– E.g. different number of timers, more buffer, etc

Tock: Dynamic Allocation
Three ways kernel allocates
memory:

● Statically
– Size determined at compile-time

● Kernel stack
– Maximum size can be determined

at compile-time via anlaysis

● Application memory
– Fined grained MPU allows

dynamic sizing of app-specific
kernel-heap.

Application Stack

Application Heap

App-specific kernel heap

Tock: Dynamic Allocation

Example kernel allocations
in application space:

● Linked list nodes
● Virtual timer structs
● Network stack buffers

Application Stack

Application Heap

App-specific kernel heap

Summary

● Traditional embedded systems are outdated:
– New hardware
– New use cases
– New generation of developers

● Security should be a main goal of any new system
● Leverage hardware protection to isolate third-party

applications
● Leverage advances in programming languages to

make kernel more secure

Challenges & Questions

● Will this work?
– Maintain reliability and power constraints unique to

embedded devices
– While making security accessible to non-expert developers

● Dynamically updating the kernel/drivers?
● How do we leverage multi-microcontroller platforms?
● MGC security - Applications that span embedded

devices, gateways (e.g. smartphones) and the cloud

