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securing the internet of things
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A Security Disaster

HP conducted a security analysis
of IoT devices

• 80% had privacy concerns
• 80% had poor passwords
• 70% lacked encryption
• 60% had vulnerabilities in UI
• 60% had insecure updates
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Securing the Internet of Things

• Secure Internet of Things Project
• 3 universities: Stanford, Berkeley, and Michigan
• 12 faculty collaborators

• Rethink IoT systems, software, and applications from the
ground up

• Make a secure IoT application as easy as a modern web
application
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Who we are?
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The Internet(s) of ThingsInternet(s) of Things
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IoT: MGC (eMbedded Gateway Cloud) Architecture

Secure Internet of Things 23
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IoT Security is Hard

• Complex, distributed systems
• 103 - 106 differences in
resources across tiers

• Many languages, OSs and
networks

• Specialized hardware
Secure Internet of Things 23
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• Just developing applications is hard
• Securing them is even harder

• Enormous attack surface
• Reasoning across hardware, software, protocols etc
• What are the threats and attack models?

• Valuable data: location, presence, medical…
• Rush to development + hard = avoid now, deal later
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Architectural Principles

End-to-end: consider security holistically, from data
generation to end-user display.

Transparency: we must be able to observe what our devices
are saying about us.

Longevity: these systems will last for up to 20 years and their
security must too.
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tock: a secure os for embedded
platforms
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Tock is an embedded operating system we’ve been building for
about a year.

• Event-driven

• Flexible/extensible to any platform

• Multi-programmable

• Principle Least-privilege
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why now?
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Shrinking Development Cycles

• Rapid prototyping
• Open Source
• “Ship early”
• “Ship often”

• How many software
systems go unchanged
for 20 years?

• Small-batch hardware
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Embedded Systems as Platforms
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goals
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Secure

Untrusted Applications

• Isolated from each other and kernel
• Can only access hardware subject to policies
• Cannot crash the system
• Updatable at runtime

Untrusted Kernel Subsystems

• Memory-isolated from each other, core kernel
• Only trusted by applications that use them
• Hardware access through limited interface
(e.g. virtualized)

Small (and simple) Trusted Core
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Reliable & Performant

Reason about memory requirements at compile-time

• Either the kernel fits or it doesn’t

Applications cannot starve system resources

• Hardware access non-blocking
• Time-sliced scheduling

Isolation shouldn’t impact performance

• Satisfy real-time constraints
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Portable and Flexible

Cortex-M based microcontrollers

• Memory Protection Units
• Reasonable memory requirements: ~3KiB kernel

Platform-specific configuration

• Drivers hardware agnostic
• Construct a platform declaratively

Small & extensible system call interface

• Currently 4 system calls
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why is it hard?

19



(Limited) Hardware Isolation Mechanisms

Traditional multi-programming OSs rely on virtual addressing

• Isolation
• Over-provisioning (e.g. swapping to disk, paging)
• Dynamic application loading

• don’t need to know physical memory location ahead of
time

We only have “Memory Protection”

• Read/write/execute bits
• …but no virtualization
• Limited number of regions
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40 Years of Programming Language Research
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40 Years of Programming Language Research

• Memory safety
• e.g. no buffer overflows

• Strict type enforcement
• e.g. no unsafe type casts

• Richer type systems
• Generics
• Interfaces

• High-level features
• Closures
• Map/Fold/Iterators…
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40 Years of Programming Language Research

• (almost) All type-safe languages have a runtime
• Automatic memory management (via Garbage collection)
for safety

• Need control over memory layout
• Performance and reliability issues:

• Garbage collection vs. timing constraints
• Dynamic memory allocation vs. compile-time memory
requirements

• Porting runtime systems for each chip is hard
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Rust: A Type-Safe “Systems” Programming Language

• Memory and type safety
• Eliminate large classes of bugs at compile time
• Strong type-system can allow component isolation
• Low-level primitives can enable rich security systems

We don’t know how to build systems in such a language
Yet!
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design
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System Architecture

Rust

Syscall Interface

Kernel Core

Hardware Sandbox

Device Drivers
(Rust language sandbox)

App1.c
App1.lua

App1.rs
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Memory Protection for Application Isolation

Applications run in “user-land”

• No direct access to hardware
• Can only access memory it owns

Flexible programming environment

• Written in any language¹
• Dynamic memory allocation
• Can “lend” memory to drivers (e.g. for buffers)

¹Currently have a C runtime, experimental Lua and C++ runtimes
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Dynamic Application loading

Constraints

• Write-only text-segment
• Text and data segments not near each other
• No virtual addressing

Solution

In short: gnarly GCC options

• Compile apps with position independent code (PIC)
• Kernel dynamically sets PIC base
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Language Sandbox

Leverage the Rust language’s type-system to isolate untrusted
drivers

• Drivers only have access to explicitly allowed hardware
resources

• Cannot address arbitrary memory
• Only consensual access to applications

Hope for even richer security policies:

• Resource constraints?
• Mandatory access control?
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rust
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Why Rust?

Two distinguishing properties from other safe languages:

• Enforces memory and type safety without a garbage
collector

• Explicit separation of trusted vs. untrusted code
• Untrusted code is strictly bound by the type system
• Trusted code can circumvent the type system
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Rust avoids the runtime overhead of garbage collection by
using ownership to determine when to free memory at
compile-time.
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Ownership for Safety

Each Value has a Single Owner

Key Property
When the owner goes out of scope, we can deallocate mem-
ory for the value.

Memory for the value 43 is allocated and bound to the variable
x.

{
let x = 43

}

When the scope exits, x is no longer valid and the memory is
“freed”
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Each Value has a Single Owner

Single owner means no aliasing, so values are either copied or
moved between variables.

This is an error:

{
let x = Foo::new();
let y = x;
println(”{}”, x);

}

because Foo::new() has been moved from x to y, so x is no
longer valid.
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How Ownership Impacts fn()

Functions must explicitly hand ownership back to the caller:

fn bar(x: Foo) -> Foo {
// Do stuff
x // <- return x

}
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Borrows

Or can use borrows: a type of reference which does not
invalidate the owner.

fn bar(x: &mut Foo) {
// Do stuff
// the borrow is implicitly released.

}

fn main() {
let mut x = Foo::new();
bar(&mut x);
println!(”{}”, x); // x still valid

}
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Borrows

Borrows are resolved at compile-time, with some constraints:

• A value can only be mutably borrowed if there are no
other borrows of the value.

• Borrows cannot outlive the value they borrow.
• Values cannot be moved while they are borrowed.
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Ownership: The Good and The Bad

The Bad

Ownership doesn’t allow circular dependencies.

But circular dependencies are everywhere in real systems.

The Good

Once the compiler verifies type safety, the resulting code looks
very close to compiled C-code.
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conclusion
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Tock

• Event-driven
• Flexible/extensible to any platform
• Multi-programmable
• Principle Least-privilege
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Our Progress So Far

• Second clean re-design iteration
• I think we’re done this time :)

• Implementation for Atmel SAM4L
based Firestorm platform

• Drivers for virtualized UART,
TMP006, GPIO

• Coming very soon:
• Bluetooth Low Energy (using
nrf51822)

• 802.15.4 (using rf233)
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Challenges & Questions

• What are the real threat models?
• How to leverage a safe type system for OS security?
• Multi-programming without virtual memory
• What’s the interface for untrusted kernel drivers?
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