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Overview: Tock

• An operating system for microcontrollers
• < 50µA average current
• 16KiB-512KiB memory
• O(1ms) timing constraints

• Rust type system isolates numerous kernel components
• Hardware protection isolates limited # of processes
• Resolves isolation granularity vs. resource consumption:

• Single-threaded asynchronous event system
• Type encapsulation for isolation
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Microcontrollers Deserve Protection
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Existing embedded ”operating systems” are not real operating
systems

• No separation of core, drivers and applications.
• No isolation mechanisms
• ”OS” is just a library

Ruby on Rails for your defibrillator
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How do we build embedded systems?
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1. Build hardware platform

• Microcontroller
• Radio, buses...
• Sensors
• Actuators
• LEDs
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2. Choose an ”OS”

• Arduino
• TinyOS
• FreeRTOS
• Atmel Software Framework, Nordic SDK...
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3. 3rd-party drivers

• TMP006
• Bluetooth
• ZigBee
• IP networking
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4. Build application on top

• Hand-rolled code
• Cryptography libraries
• Statistics/Machine learning
• PID control
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5. Optimize

• Energy consumption
• Performance
• Memory usage

• !Security
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Embedded systems are built like other systems

built from reusable components
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Reusing components is a GOOD!

• Less engineering effort
• Fewer bugs overall
• Better interoperability
• ...
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Mixing code from various sources

+ No isolation mechanisms

+ Optimizing for performance

= Recipe for disaster

What happens when there is a bug in one of the components?
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Outline

1. Why processes won’t work
2. Tock architecture
3. Capsules
4. Grants
5. Performance
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Ownership is Theft



Process Isolation

ZigBee I2C SPI Sensor …
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Why processes?

• Isolation
• Concurrency (parallelism)
• Good programming model
• Convenient to enforce
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Why not processes?

Resource overhead

• Allocate memory for each process
• Context switch for communication

Tock is for resource constrained devices

• 16KiB memory
• O(1ms) timing constraints
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16KiB SRAM
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16KiB SRAMI2C
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16KiB SRAMI2C
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Tradeoff granularity for resources
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Architecture



Challenge: How do we isolate concurrent components without
incurring a memory/performance overhead for each
component?

Key idea: Use a single-threaded event system and isolate
using the type and module system
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HAL Scheduler Config
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Kernel Design

Event-based concurrency:

• Enqueue all hardware interrupts
• Never block on I/O
• Communicate between components with function calls

Isolation and safety from Rust

• Type-safe
• No garbage collection
• ”Zero-cost” abstractions
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Tock Design

Small TCB:

• Hardware abstraction layer (maps I/O registers into types)
• Platform tree
• Event scheduler

Most complex components are isolated:

• Peripheral drivers
• Virtualization layers (timers, bus virtualization)
• Applications
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Why Rust?

Two distinguishing properties:

• Memory and type safety without a garbage collector
• Explicit separation of trusted vs. untrusted code

Rust avoids the runtime overhead of garbage collection by
using affine types to determine when to free memory at
compile-time.
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Capsules
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mod light_sensor {
pub struct LightSensor {

i2c: &I2CDevice,
state: State,
buffer: &[u8],
callback: Option<Callback>,

}

impl LightSensor {
pub fn start_read_lux(&self) { ... }

}

impl I2CClient for LightSensor {
fn command_complete(&self, buffer: &[u8]) { ... }

}
}
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Capsules

• Run in privileged hardware mode
• Can only access resources explicitly granted to it
• Interact ”directly”

• Function calls, direct field references

• No overhead for granularity
• Direct references⇒ inlining
• Virtualization compiles ≈ cooperative sharing

• Cooperatively scheduled
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Capsules are untrusted for access but trusted for liveness.
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Dynamic Memory with Grants
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• No heap in the kernel
• But capsules must allocate memory for process requests
• Remember: single-threaded execution
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Grant Regions

• Process-specific kernel-heap
• Not accessible to process
• Capsules can allocate there dynamically
• Deallocation on process exit is O(1)
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Grant Regions

Need to enforce three invariants:

1. Allocated memory does not allow capsules to break the
type system.

2. Capsules can only access pointers to process memory
while the process is alive.

3. The kernel must be able to reclaim memory from
terminated process.
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Key Challenge

Processes can die and their memory needs to be reclaimed
dynamically.

Rust determines memory reclamation statically.
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We can use type system to enforce simple properties that
interact with the system architecutre to achieve

higher-level safety goals.
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impl<T: Default> Grant {
fn enter<F,R>(&self, appid: AppId, func: F)

-> Result<R, Error> where
F: for<'b> FnOnce(&'b mut Owned<T>, &'b mut Allocator)

-> R, R: Copy
}

impl Allocator {
fn alloc<T>(&mut self, data: T) -> Result<Owned<T>, Error>

}

struct Owned<T: ?Sized> { data: Unique<T>, app_id: AppId }
impl Drop, Deref, DerefMut for Owned { ... }
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What do we know:

1. 'b lifetime is existential
2. Allocator and Owned do not implement Copy
3. Allocator and enter are the only way to create an
Owned type.

Owned types can never escape the closure passed to enter.
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Owned types can never escape the closure passed to enter.

When the process scheduler is executing, all capsules have
returned.

When a process dies, we can reclaim all of it’s grants
immediately, since no references can be outstanding!
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Evaluation



Firestorm Platform

• Atmel SAM4L Cortex-M4
• 64KiB SRAM
• 512KiB flash
• 48Mhz
• USARTs, SPI, I2C, USB,
LCD, AES...

• Bluetooth Low Energy,
802.15.4

• Light, temperature,
acceleration
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Firestorm Platform

• > 100 capsule instances
• e.g. for each of 75 GPIO pins

• 7Kib memory
• 30Kib flash
• 7 processes with 8KiB memory each
• Drivers for BLE & 802.15.4 in processes
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Capsule Operations are Cheap
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Capsule Operations are Cheap

Event Source Core Kernel Capsule Process

GPIO Input 0.623μs 8.54 μs 33.4 μs
Timer Expiration 0.623μs 8.67 μs 36.8 μs

Operation CPU Cycles

Switch to kernel 111
Call capsule 83
Switch back to process 146

Total 340
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Case Study: Sensing Application
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Conclusion



We didn’t discuss

• Challenges using an affine type system
• Solution: memory containers

• Closure based event-models
• Syscall interface
• Concurrency model in user space
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Limitations & Future Work

• Capsules are trusted for liveness
• Won’t work with shared-memory multiprocessors
• Trusted configuration module for each platform
• IPC, dynamic reprogramming, multi-SoC platforms
• Potential benefits from type-safe processes
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Summary

• Embedded systems growing in complexity
• Providing isolation and safety is critical
• Current OSs inadequate
• Tock:

• Prioritizes safety by keeping TCB small
• Leverages language & hardware mechanisms
• Memory grants to allow safe dynamic allocation

• Tradeoffs between granularity, concurrency and safety
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