
Tock
A Safe Multi-tasking Operating System for Microcontrollers

Amit Levy
Branden Ghena Bradford Campbell Pat Pannuto
Prabal Dutta Philip Levis
June 12, 2016

1

Overview: Tock

• An operating system for microcontrollers
• < 50µA average current
• 16KiB-512KiB memory
• O(1ms) timing constraints

• Rust type system isolates numerous kernel components
• Hardware protection isolates limited # of processes
• Resolves isolation granularity vs. resource consumption:

• Single-threaded asynchronous event system
• Type encapsulation for isolation

2

Microcontrollers Deserve Protection

3

Existing embedded ”operating systems” are not real operating
systems

• No separation of core, drivers and applications.
• No isolation mechanisms
• ”OS” is just a library

Ruby on Rails for your defibrillator

4

Existing embedded ”operating systems” are not real operating
systems

• No separation of core, drivers and applications.
• No isolation mechanisms
• ”OS” is just a library

Ruby on Rails for your defibrillator

4

How do we build embedded systems?

5

1. Build hardware platform

• Microcontroller
• Radio, buses...
• Sensors
• Actuators
• LEDs

6

2. Choose an ”OS”

• Arduino
• TinyOS
• FreeRTOS
• Atmel Software Framework, Nordic SDK...

7

3. 3rd-party drivers

• TMP006
• Bluetooth
• ZigBee
• IP networking

8

4. Build application on top

• Hand-rolled code
• Cryptography libraries
• Statistics/Machine learning
• PID control

9

5. Optimize

• Energy consumption
• Performance
• Memory usage

• !Security

10

5. Optimize

• Energy consumption
• Performance
• Memory usage
• !Security

10

Embedded systems are built like other systems

built from reusable components

11

Embedded systems are built like other systems

built from reusable components

11

Reusing components is a GOOD!

• Less engineering effort
• Fewer bugs overall
• Better interoperability
• ...

12

Mixing code from various sources

+ No isolation mechanisms

+ Optimizing for performance

= Recipe for disaster

What happens when there is a bug in one of the components?

13

Mixing code from various sources

+ No isolation mechanisms

+ Optimizing for performance

= Recipe for disaster

What happens when there is a bug in one of the components?

13

Mixing code from various sources

+ No isolation mechanisms

+ Optimizing for performance

= Recipe for disaster

What happens when there is a bug in one of the components?

13

Mixing code from various sources

+ No isolation mechanisms

+ Optimizing for performance

= Recipe for disaster

What happens when there is a bug in one of the components?

13

Mixing code from various sources

+ No isolation mechanisms

+ Optimizing for performance

= Recipe for disaster

What happens when there is a bug in one of the components?

13

Outline

1. Why processes won’t work
2. Tock architecture
3. Capsules
4. Grants
5. Performance

14

Ownership is Theft

Process Isolation

ZigBee I2C SPI Sensor …

15

Process Isolation

ZigBee I2C SPI Sensor …

15

Why processes?

• Isolation
• Concurrency (parallelism)
• Good programming model
• Convenient to enforce

16

Why not processes?

Resource overhead

• Allocate memory for each process
• Context switch for communication

Tock is for resource constrained devices

• 16KiB memory
• O(1ms) timing constraints

17

Why not processes?

Resource overhead

• Allocate memory for each process
• Context switch for communication

Tock is for resource constrained devices

• 16KiB memory
• O(1ms) timing constraints

17

16KiB SRAM

18

16KiB SRAMI2C

18

16KiB SRAMI2C

tmp006

isl29035

18

16KiB SRAMI2C

tmp006

isl29035

SPI

UART

18

16KiB SRAMI2C

tmp006

isl29035

SPI

UART

GPIO1

GPIO0 GPIO2

18

16KiB SRAMI2C

tmp006

isl29035

SPI

UART

GPIO1

GPIO0 GPIO2

AST

18

Tradeoff granularity for resources

19

Architecture

Challenge: How do we isolate concurrent components without
incurring a memory/performance overhead for each
component?

Key idea: Use a single-threaded event system and isolate
using the type and module system

20

Challenge: How do we isolate concurrent components without
incurring a memory/performance overhead for each
component?

Key idea: Use a single-threaded event system and isolate
using the type and module system

20

HAL Scheduler Config

SP
I

I2
C

G
P
IO

C
o
n
so
le

U
A
R
T

Ti
m
er

Core kernel
(Trusted)

Capsules
(Untrusted)

P
ro

c
e

s
s
e
s

(A
n
y
 l
a
n
g
u
a
g
e
)

K
e
rn

e
l

(R
u
s
t)

…

heap

stack

text

data

grant

heap

stack

text

data

grant

RAM

Flash

Process

Accessible

Memory

21

Kernel Design

Event-based concurrency:

• Enqueue all hardware interrupts
• Never block on I/O
• Communicate between components with function calls

Isolation and safety from Rust

• Type-safe
• No garbage collection
• ”Zero-cost” abstractions

22

Kernel Design

Event-based concurrency:

• Enqueue all hardware interrupts
• Never block on I/O
• Communicate between components with function calls

Isolation and safety from Rust

• Type-safe
• No garbage collection
• ”Zero-cost” abstractions

22

Tock Design

Small TCB:

• Hardware abstraction layer (maps I/O registers into types)
• Platform tree
• Event scheduler

Most complex components are isolated:

• Peripheral drivers
• Virtualization layers (timers, bus virtualization)
• Applications

23

Why Rust?

Two distinguishing properties:

• Memory and type safety without a garbage collector
• Explicit separation of trusted vs. untrusted code

Rust avoids the runtime overhead of garbage collection by
using affine types to determine when to free memory at
compile-time.

24

Capsules

HAL Scheduler Config

SP
I

I2
C

G
P
IO

C
o
n
so
le

U
A
R
T

Ti
m
er

Core kernel
(Trusted)

Capsules
(Untrusted)

P
ro

c
e

s
s
e
s

(A
n
y
 l
a
n
g
u
a
g
e
)

K
e
rn

e
l

(R
u
s
t)

…

heap

stack

text

data

grant

heap

stack

text

data

grant

RAM

Flash

Process

Accessible

Memory

25

mod light_sensor {
pub struct LightSensor {

i2c: &I2CDevice,
state: State,
buffer: &[u8],
callback: Option<Callback>,

}

impl LightSensor {
pub fn start_read_lux(&self) { ... }

}

impl I2CClient for LightSensor {
fn command_complete(&self, buffer: &[u8]) { ... }

}
}

26

Capsules

• Run in privileged hardware mode
• Can only access resources explicitly granted to it
• Interact ”directly”

• Function calls, direct field references

• No overhead for granularity
• Direct references⇒ inlining
• Virtualization compiles ≈ cooperative sharing

• Cooperatively scheduled

27

Capsules are untrusted for access but trusted for liveness.

28

Dynamic Memory with Grants

HAL Scheduler Config

SP
I

I2
C

G
P
IO

C
o
n
so
le

U
A
R
T

Ti
m
er

Core kernel
(Trusted)

Capsules
(Untrusted)

P
ro

c
e

s
s
e
s

(A
n
y
 l
a
n
g
u
a
g
e
)

K
e
rn

e
l

(R
u
s
t)

…

heap

stack

text

data

grant

heap

stack

text

data

grant

RAM

Flash

Process

Accessible

Memory

29

• No heap in the kernel
• But capsules must allocate memory for process requests
• Remember: single-threaded execution

30

Grant Regions

• Process-specific kernel-heap
• Not accessible to process
• Capsules can allocate there dynamically
• Deallocation on process exit is O(1)

31

Grant Regions

Need to enforce three invariants:

1. Allocated memory does not allow capsules to break the
type system.

2. Capsules can only access pointers to process memory
while the process is alive.

3. The kernel must be able to reclaim memory from
terminated process.

32

Key Challenge

Processes can die and their memory needs to be reclaimed
dynamically.

Rust determines memory reclamation statically.

33

We can use type system to enforce simple properties that
interact with the system architecutre to achieve

higher-level safety goals.

34

impl<T: Default> Grant {
fn enter<F,R>(&self, appid: AppId, func: F)

-> Result<R, Error> where
F: for<'b> FnOnce(&'b mut Owned<T>, &'b mut Allocator)

-> R, R: Copy
}

impl Allocator {
fn alloc<T>(&mut self, data: T) -> Result<Owned<T>, Error>

}

struct Owned<T: ?Sized> { data: Unique<T>, app_id: AppId }
impl Drop, Deref, DerefMut for Owned { ... }

35

What do we know:

1. 'b lifetime is existential
2. Allocator and Owned do not implement Copy
3. Allocator and enter are the only way to create an
Owned type.

Owned types can never escape the closure passed to enter.

36

What do we know:

1. 'b lifetime is existential
2. Allocator and Owned do not implement Copy
3. Allocator and enter are the only way to create an
Owned type.

Owned types can never escape the closure passed to enter.

36

Owned types can never escape the closure passed to enter.

When the process scheduler is executing, all capsules have
returned.

When a process dies, we can reclaim all of it’s grants
immediately, since no references can be outstanding!

37

Owned types can never escape the closure passed to enter.

When the process scheduler is executing, all capsules have
returned.

When a process dies, we can reclaim all of it’s grants
immediately, since no references can be outstanding!

37

Owned types can never escape the closure passed to enter.

When the process scheduler is executing, all capsules have
returned.

When a process dies, we can reclaim all of it’s grants
immediately, since no references can be outstanding!

37

Evaluation

Firestorm Platform

• Atmel SAM4L Cortex-M4
• 64KiB SRAM
• 512KiB flash
• 48Mhz
• USARTs, SPI, I2C, USB,
LCD, AES...

• Bluetooth Low Energy,
802.15.4

• Light, temperature,
acceleration

38

Firestorm Platform

• > 100 capsule instances
• e.g. for each of 75 GPIO pins

• 7Kib memory
• 30Kib flash
• 7 processes with 8KiB memory each
• Drivers for BLE & 802.15.4 in processes

39

Capsule Operations are Cheap

 0

 20

 40

 60

 80

 100

 120

 140

GPIO
Process

GPIO
Capsule

SPI
Process

SPI
Capsule

UART
Process

UART
Capsule

T
im

e
 (

µ
s
)

0.12 µs0.12 µs
2.8 µs2.8 µs

 11800
 11900
 12000
 12100

CPU Time
I/O Time

40

Capsule Operations are Cheap

Event Source Core Kernel Capsule Process

GPIO Input 0.623μs 8.54 μs 33.4 μs
Timer Expiration 0.623μs 8.67 μs 36.8 μs

Operation CPU Cycles

Switch to kernel 111
Call capsule 83
Switch back to process 146

Total 340

41

Case Study: Sensing Application

C
o
re

K
e
rn

e
l

C
a
p
s
u
le

s
P

ro
c
e
s
s
e
s

HAL Scheduler Config

Async
Timer

Timer

Virtual
Timer

Light
Sensor

I2C

Virtual
I2C

nRF
Packet

UART

SPI
Master

SPI

BLE
Serialization

Driver

S
y
s
te

m
 C

a
ll

In
te

rf
a

c
e

RF233
Driver

Sensing App Alarm App

Temp
Sensor

42

Conclusion

We didn’t discuss

• Challenges using an affine type system
• Solution: memory containers

• Closure based event-models
• Syscall interface
• Concurrency model in user space

43

Limitations & Future Work

• Capsules are trusted for liveness
• Won’t work with shared-memory multiprocessors
• Trusted configuration module for each platform
• IPC, dynamic reprogramming, multi-SoC platforms
• Potential benefits from type-safe processes

44

Summary

• Embedded systems growing in complexity
• Providing isolation and safety is critical
• Current OSs inadequate
• Tock:

• Prioritizes safety by keeping TCB small
• Leverages language & hardware mechanisms
• Memory grants to allow safe dynamic allocation

• Tradeoffs between granularity, concurrency and safety

45

	Microcontrollers Deserve Protection
	Ownership is Theft
	Architecture
	Capsules
	Dynamic Memory with Grants
	Evaluation
	Conclusion

