Bridging the Security Gap with Decentralized
Information Flow Control

Adam Belay, Andrea Bittau, Dan Boneh, Pablo Buiras*,
Daniel Giffin, Amit Levy, Ali Mashtizadeh, David Mazieres,
John Mitchell, Alejandro Russo*, Amy Shen, Deian Stefan,
David Terei, Edward Yang, Nickolai Zeldovicht

Stanford, tMIT, *Chalmers

Project Goal

Make it possible for programmers
who are not security experts to build

secure web applications

Hails, LIO/DCLabels, Safe Haskell

Pablo Buiras, Amit Levy, Deian Stefan, David Terei,
David Mazieres, Alejandro Russo

Outline

@ Motivation
@ High level overview of Hails
@® Mechanisms:

@ Haskell and Safe Haskell
@® LIO and DCLabels

The Server Side Today: Web Apps

e Most apps structured around MVC
(Model-View-Controller)
e Rails, Django, Struts, .NET, others. ..

e Useful for compartmentalizing development

Jen’s
Browser

Controller

Why is the Web so &$@*ing Broken?!

Foursquare vulnerability exploited: ‘private’ location
data captured

Jun. 30, 2010 (10:15 am) By: Andy Carvell

a5 4 B s compananr 20086 el

Ferry Building r— - L
The GitHub Blog

[March4,2012 8 mojombo

Public Key Security Vulnerability and Mitigation

X, Confluence Security Advisory 2012-05-17

Added by Andrew Lui [Atlassian Technical Writer] last edited by Sarah Maddox Account) on Aug 08,2012

This advisory discloses a critical security vulnerability that exists in all versions of Confluence up to and includin

who have and installed should upgrade their existing Confluence it

. Emerprlse Hosted customers need to request an upgrade by raising a support request at http://support.af
project

« JIRA Studio and Atlassian OnDemand customers are not affected by any of the issues described in thit

The Server Side Today: Web Apps

Well. ..

e No notion of security policies
e Ad-hoc security checks throughout applications

e Easy to forget a check (e.g. GitHub mass assignment
volnerability)

o Extracting the policy requires looking at the whole
application

o Often breaking MVC abstraction

Hails: A web platform framework

Goals

e Suitable for web platforms
e Usable by web developers

¢ Easy to write policies
e Easy to write the rest of the app

¢ Deployable today

e Change as little of the stack as possible

What are web platforms?

Web platforms are collections of
independant apps that share date

What are web platforms?

Web Apps

e Run by a single enitity
e Are developed by a single organization

e Grant all components complete access to all data

Web Platforms

e Consist of apps run by various entities

¢ Developed by myriad organizations not-necessarily in
collaboration

e Different components have different access level to data.

The Server Side Today: Web Platforms

Jen’s
Browser

iApp.biz Servers PlatformX Datacenter

\/
Give me Jen’s profile, please

>
=
<
)
Sr
N
=
°

Current Solution

Allow Access?

Allowing Smiley access will let it pull your profile information, photos, your
friends’ info, and other content that it requires to work.
»] Allow EIZELEE

By accepting, you agree to the Facebook Platform User Terms of Service in your use of Smiley.

Change the hosting model

Instead of

e Developers hosting apps on in their own datacenters

e Platforms enforcing security contractually (e.g. terms of

service)

Hails: A new approach

e Platforms host apps on their own hardware, on top of Hails

¢ Use information flow control to ensures apps obey

security policies

Adding Policy to MVC

e New paradigm: Model-Policy-View-Controller

e Policy specified independantly
¢ No policy in the Model, View or Controller

¢ Hails has two types of third-party code

e Model-Policies (MPs)

e Provide data model and policy

e View-Controllers (VCs)

o Web server executables that link to MPs

Trust Model in Hails

e View-Controllers are completely untrusted

¢ Includes most of the interesting functionality, like Ul

e Model-Policies must only be trusted with the data they
define

o Users have to trust that they set good policies.

¢ Hails uses information flow control (IFC) do enforce
policies on data models, end-to-end

Mechanisms

Haskell & Safe Haskell

Haskell

e Safe(ish), strongly typed, pure

e Strict separation of side-effectful code through Monads:

putStrLn :: String -> I0 ()

map . toLower —-> String —-> String

e Built-in code compartmentalization

e Packages
e Modules

e Allowed us to implement IFC as a library

Safe Haskell

An extension to GHC developed by David Terei. Included in
GHC since version 7.
e Haskell has some builtin holes in the type system:

e unsafePerformIO, OverlappingInstances

e Haskell has some holes in the module system
¢ Safe Haskell closes those holes:

¢ -XSafe modules cannot use unsafe operations or depend on
unsafe modules

e Trustworthy modules must reside in packages that are
explicitly marked trusted by admin

Mechanisms

DClLabels and LIO - Decentralized
Information Flow Control (DIFC)

Information Flow Control Labels

Labels are points on a lattice with well defined C, 11, and L

class (Egq 1, Show 1) => Label 1 where

canFlowTo :: 1 -> 1 —-> Bool

lub :: 1 > 1 -> 1 —-- Least upper bound

glb :: 1 > 1 -> 1 —-- Greatest lower bound
Example label:

instance Label Integer where
x ‘canFlowTo' y = x <=y
lub = max

glb = min

DClLabels

Disjunction Category Label

("amit" \/ "deian") %% ("amit")

e Labels are split into secrecy (read) and integrity (write)
components

e Each component is a boolean formula over principals in
Conjunctive Normal Form

e Principals are just strings — i.e. usernames, network
endpoints. ..

DClLabels

Labels form lattice:
° <S1 %% I1> C <82 %% /2> iff

e S — S, and
e |{ = b (note reversed order)

DClLabels

Some noteworthy points on the lattice

e Top: nobody can read, everyone can write
e False %% True

¢ Bottom: everybody can read, nobody can write
e True %% False

e Public: everybody can read and write

e True %% True

LIO - Labeled I/0O

We saw it two slides ago... canFlowTo
¢ A Haskell Monad to replace the IO monad
¢ Get to interpose on the “>>=" (bind) operator

e Every thread of execution has a “current label”

e Restricts code from performing unchecked side-effects
(I/O, variable mutation)

LIO - Labeled I/0O

Inputs, outputs, mutable variables, locks. .. are all labeled, so
the TCB performs label checks:

hPutStr :: Labeled Handle -> String —-> LIO ()
hPutStr (LabeledTCB hLabel h) str = do
cl <- currentLabel
if cl ‘canFlowTo' hLabel &¢&
hLabel ‘canFlowTo' cl then
—— raises current label to the glub of cl and h
taint hlLabel
i0TCB $ hPutStr h
else throwLIO LabelError {...}

LIO - Privileges

Sometimes we circumvent policies, but should be allowed if a
thread is explicitly allowed to leak information.

e Privileges allow us to downgrade labels

class PrivDesc 1 p where
canFlowToP :: p -> 1 -> 1 -> Bool

e (S1%%) Tp (S2%% b) iff

° Sg/\p: Si, and
e 1 A p = b (note reversed order)

Overflow

MPs and VCs

A closer look. ..

Model Policy

A document oriented data-store:

e Documents are stored in collections, stored in databases

¢ Semi-structured schema with flexible data-types

users collection:

d =
Field Value L

L user Jen L
— email jen@aol.com iy
friends [Alice, Bob] | I

Model Policy

e Web app data already encodes policy

e Function from a document to a policy

users collection:

Field Value
- = user Jen
— email jen@aol.com

friends [Alice, Bob]

collection "users" $ do
access $ do
readers ==> anybody
writers ==> anybody
field "user" key

document $ \doc -> do

readers ==> anybody
writers ==> ("user" ‘from' doc)
field "email" $ labeled $ \doc -> do
readers ==> ("user" ‘from' doc)
\/ fromList ("friends" ‘from‘ doc)

writers ==> anybody

View Controller

A VC is a web request handler

Implement Ul and external API

e Source code viewer, RSS feed, Wiki editor,. ..

Handle all data persistence through MPs

Low barrier, since new VCs can reuse existing MPs

Bugs in VCs are manifested as broken features — never as
vulnerabilities

Evaluation: Usablility

MPVC simplified reasoning about security / Hails rendered
common security bugs futile

X Need scaffolding tools

Wit icios iohand,

Better with new policy DSL

Normalized Requests/Seconds

Evalutaion: Performance

B Hails
B Sinatra
Apache PHP

Pong Table DB Read DB Write

Limitations / Present & Future Work

e Confined to Haskell
e Now - cjail
e Future - Dune

e Covert channels

e Internal timing closed ([ICFP 2012])
External timining - mitigation

How much to mitigate?
More work to do...

Cache-based timing attack

tl:dr

e Current platforms: functionality vs. privacy
e Hails platforms guarantee security end-to-end

e Host apps on platform
e Make policy explicit
¢ Enforce policy with information flow control

$ cabal install hails

http://gitstar.com http://hails.io/

