
Bridging the Security Gap with Decentralized
Information Flow Control

Adam Belay, Andrea Bittau, Dan Boneh, Pablo Buiras*,
Daniel Giffin, Amit Levy, Ali Mashtizadeh, David Mazieres,
John Mitchell, Alejandro Russo*, Amy Shen, Deian Stefan,

David Terei, Edward Yang, Nickolai Zeldovich†

Stanford, †MIT, *Chalmers

Project Goal

Make it possible for programmers
who are not security experts to build
secure web applications

Hails, LIO/DCLabels, Safe Haskell
Pablo Buiras, Amit Levy, Deian Stefan, David Terei,
David Mazieres, Alejandro Russo

Outline

1 Motivation

2 High level overview of Hails

3 Mechanisms:

1 Haskell and Safe Haskell

2 LIO and DCLabels

The Server Side Today: Web Apps

• Most apps structured around MVC
(Model-View-Controller)

• Rails, Django, Struts, .NET, others. . .

• Useful for compartmentalizing development

Why is the Web so &$@*ing Broken?!

The Server Side Today: Web Apps

Well. . .

• No notion of security policies

• Ad-hoc security checks throughout applications

• Easy to forget a check (e.g. GitHub mass assignment
volnerability)

• Extracting the policy requires looking at the whole
application

• Often breaking MVC abstraction

Hails: A web platform framework

Goals

• Suitable for web platforms

• Usable by web developers

• Easy to write policies
• Easy to write the rest of the app

• Deployable today

• Change as little of the stack as possible

What are web platforms?

Web platforms are collections of
independant apps that share date

What are web platforms?

Web Apps

• Run by a single enitity

• Are developed by a single organization

• Grant all components complete access to all data

Web Platforms

• Consist of apps run by various entities

• Developed by myriad organizations not-necessarily in
collaboration

• Different components have different access level to data.

The Server Side Today: Web Platforms

Jen’s
Browser

iApp.biz Servers PlatformX Datacenter

Give me Jen’s profile, please

Aalyah Zen Lopez

Current Solution

Change the hosting model

Instead of

• Developers hosting apps on in their own datacenters

• Platforms enforcing security contractually (e.g. terms of
service)

Hails: A new approach

• Platforms host apps on their own hardware, on top of Hails

• Use information flow control to ensures apps obey
security policies

Adding Policy to MVC

• New paradigm: Model-Policy-View-Controller

• Policy specified independantly
• No policy in the Model, View or Controller

• Hails has two types of third-party code

• Model-Policies (MPs)
• Provide data model and policy
• View-Controllers (VCs)
• Web server executables that link to MPs

Trust Model in Hails

• View-Controllers are completely untrusted

• Includes most of the interesting functionality, like UI

• Model-Policies must only be trusted with the data they
define

• Users have to trust that they set good policies.

• Hails uses information flow control (IFC) do enforce
policies on data models, end-to-end

Mechanisms

Haskell & Safe Haskell

Haskell

• Safe(ish), strongly typed, pure

• Strict separation of side-effectful code through Monads:

putStrLn :: String -> IO ()

map . toLower -> String -> String

• Built-in code compartmentalization

• Packages
• Modules

• Allowed us to implement IFC as a library

Safe Haskell

An extension to GHC developed by David Terei. Included in
GHC since version 7.

• Haskell has some builtin holes in the type system:

• unsafePerformIO, OverlappingInstances

• Haskell has some holes in the module system

• Safe Haskell closes those holes:

• -XSafe modules cannot use unsafe operations or depend on
unsafe modules

• Trustworthy modules must reside in packages that are
explicitly marked trusted by admin

Mechanisms

DCLabels and LIO - Decentralized
Information Flow Control (DIFC)

Information Flow Control Labels

Labels are points on a lattice with well defined v, u, and t:

class (Eq l, Show l) => Label l where

canFlowTo :: l -> l -> Bool

lub :: l -> l -> l -- Least upper bound

glb :: l -> l -> l -- Greatest lower bound

Example label:

instance Label Integer where

x ‘canFlowTo‘ y = x <= y

lub = max

glb = min

DCLabels

Disjunction Category Label

("amit" \/ "deian") %% ("amit")

• Labels are split into secrecy (read) and integrity (write)
components

• Each component is a boolean formula over principals in
Conjunctive Normal Form

• Principals are just strings – i.e. usernames, network
endpoints. . .

DCLabels

Labels form lattice:

• 〈S1 %% I1〉 v 〈S2 %% I2〉 iff

• S2 =⇒ S1, and
• I1 =⇒ I2 (note reversed order)

DCLabels

Some noteworthy points on the lattice

• Top: nobody can read, everyone can write

• False %% True

• Bottom: everybody can read, nobody can write

• True %% False

• Public: everybody can read and write

• True %% True

LIO - Labeled I/O

We saw it two slides ago. . . canFlowTo

• A Haskell Monad to replace the IO monad

• Get to interpose on the “>>=” (bind) operator

• Every thread of execution has a “current label”

• Restricts code from performing unchecked side-effects
(I/O, variable mutation)

LIO - Labeled I/O

Inputs, outputs, mutable variables, locks. . . are all labeled, so
the TCB performs label checks:

hPutStr :: Labeled Handle -> String -> LIO ()

hPutStr (LabeledTCB hLabel h) str = do

cl <- currentLabel

if cl ‘canFlowTo‘ hLabel &&

hLabel ‘canFlowTo‘ cl then

-- raises current label to the glub of cl and hLabel

taint hLabel

ioTCB $ hPutStr h

else throwLIO LabelError {...}

LIO - Privileges

Sometimes we circumvent policies, but should be allowed if a
thread is explicitly allowed to leak information.

• Privileges allow us to downgrade labels

class PrivDesc l p where

canFlowToP :: p -> l -> l -> Bool

• 〈S1 %% I1〉 vp 〈S2 %% I2〉 iff

• S2 ∧ p =⇒ S1, and
• I1 ∧ p =⇒ I2 (note reversed order)

Overflow

MPs and VCs

A closer look. . .

Model Policy

A document oriented data-store:

• Documents are stored in collections, stored in databases

• Semi-structured schema with flexible data-types

Name Value

user jen

email jen@
friends [alice, bob, …]

Name Value

user jen

email jen@
friends [alice, bob, …]

Field Value

user Jen

email jen@aol.com

friends [Alice, Bob]

users collection:

Model Policy

• Web app data already encodes policy

• Function from a document to a policy

Data model: document-oriented
 ➤ Collection: set of documents
 ➤ Document: set of field-value pairs

Model-Policy (MP)

Name Value

user jen

email jen@
friends [alice, bob, …]

Name Value

user jen

email jen@
friends [alice, bob, …]

Field Value

user Jen

email jen@aol.com

friends [Alice, Bob]

users collection:

collection "users" $ do

access $ do

readers ==> anybody

writers ==> anybody

field "user" key

document $ \doc -> do

readers ==> anybody

writers ==> ("user" ‘from‘ doc)

field "email" $ labeled $ \doc -> do

readers ==> ("user" ‘from‘ doc)

\/ fromList ("friends" ‘from‘ doc)

writers ==> anybody

View Controller

• A VC is a web request handler

• Implement UI and external API

• Source code viewer, RSS feed, Wiki editor,. . .

• Handle all data persistence through MPs

• Low barrier, since new VCs can reuse existing MPs

Bugs in VCs are manifested as broken features – never as
vulnerabilities

Evaluation: Usablility

√
MPVC simplified reasoning about security

√
Hails rendered

common security bugs futile

χ Need scaffolding tools

χ Writing policies is hard.
? Better with new policy DSL

Evalutaion: Performance

0

0.25

0.5

0.75

1

Pong Table DB Read DB Write

N
or

m
al

iz
ed

 R
eq

ue
st

s/
Se

co
nd

s

Hails
Sinatra
Apache PHP

47.6K R/s

479 R/s

1.1K R/s
1.4K R/s

Limitations / Present & Future Work

• Confined to Haskell

• Now - cjail
• Future - Dune

• Covert channels

• Internal timing closed ([ICFP 2012])
• External timining - mitigation
• How much to mitigate?
• More work to do. . .
• Cache-based timing attack

tl;dr

• Current platforms: functionality vs. privacy

• Hails platforms guarantee security end-to-end

• Host apps on platform
• Make policy explicit
• Enforce policy with information flow control

$ cabal install hails

http://gitstar.com http://hails.io/

